1. Suppose that S is a vector space over field F, and S_1, S_2 are both subspaces of S. Prove that $S_1 + S_2$ is a subspace of S.

2. Suppose that S is a vector space over field F, and S_1, S_2 are both subspaces of S. Prove that $S_1 ∩ S_2$ is a subspace of S.

3. Consider the vector space \mathbb{R}^2. Find two subspaces S_1, S_2 such that $S_1 ∪ S_2$ is not a subspace.

4. Suppose that matrix $A ∈ M_{m,n}(F)$, prove that the rowspace and nullspace are both subspaces of F^n.

5. Prove that every superlist of a dependent list of vectors is again dependent.

6. For matrix $A ∈ M_{m,n}(F)$, prove that the rowspace and nullspace are both subspaces of F^n.

7. Find an infinite-dimensional vector space V, with two proper nontrivial subspaces V_1, V_2 such that V_1 is finite-dimensional and V_2 is infinite-dimensional.

8. Set $P_2(t)$ to be the set of all polynomials of degree at most 2, in variable t, with real coefficients. Prove that $P_2(t)$ is isomorphic to \mathbb{R}^3.

9. Let $P_2(t)$ be as in (8). Prove that $T : P_2(t) → P_2(t)$ given by $T(f(t)) = t \frac{df(t)}{dt}$ is a linear transformation.

10. Let T be as in (9). Find its rank and nullity.

11. For matrices A, B where AB is defined, prove that $(AB)^T = B^T A^T$ and $(AB)^* = B^* A^*$.

12. For complex-valued matrix $A = [a_{ij}]$, prove that $A^* = A^T$ if and only if $a_{ij} ∈ \mathbb{R}$ for all i, j.

13. For complex-valued matrix $A = [a_{ij}]$, prove that $A + A^T$ is symmetric, $A + \overline{A}$ is real, and $A + A^*$ is Hermitian.

14. Calculate the determinant and permanent of $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$.

15. Calculate the inverse of $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

16. Prove that the inverse of an elementary matrix is elementary.

17. For $A, B ∈ M_n(F)$, prove that AB is invertible if and only if both A, B are invertible.

18. Suppose that square matrix A has RREF of I. Prove that A may be written as the product of elementary matrices.

19. If $A ∈ M_{m,n}(F)$, prove that $\text{rank} A ≤ \min(m, n)$.

20. If $A ∈ M_{m,n}(F)$, and $B ∈ M_{n,n}(F)$, prove that $\text{rank} A ≥ \text{rank} AB$.

21. If $A ∈ M_{m,n}(F)$, and $B ∈ M_{n,n}(F)$ is nonsingular, prove that $\text{rank} A = \text{rank} AB$.

22. If $A ∈ M_{m,n}(\mathbb{C})$, prove that $\text{rank} A = \text{rank} A^* A$.

23. Prove that if square matrix A has a left inverse, then it also has a right inverse, and they are the same.

24. Let $V = \mathbb{C}^2$. Define $\langle x, y \rangle = y^* \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} x$. Prove that this defines an inner product on V.

25. With $V, \langle ·, · \rangle$ as in (24), calculate the angle between $x = (-1, 2)$ and $y = (1, 1)$.

26. With $V, \langle ·, · \rangle$ as in (24), use Gram-Schmidt starting with $\{e_1, e_2\}$ to find an orthonormal basis for V.

27. Suppose S is a subspace of \mathbb{C}^n. Prove that $(S^⊥)^⊥ = S$.

28. Suppose S_1, S_2 are subspaces of \mathbb{C}^n. Prove that $(S_1 + S_2)^⊥ = S_1^⊥ ∩ S_2^⊥$.

29. Calculate $C_2(A)$ for $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$.

30. Calculate $C_2(A^2)$ for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, and verify that $C_2(A^2) = C_2(A)^2$.

31. Calculate the adjugate of $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.