MATH601 Spring 2008 Handout 7

Unit 4: Cardinals

A cardinal is a number that measures the size of a set. For set S, we use |S| to denote the cardinal that measures the size of S. Important comment: Our number sense breaks down with infinite cardinals. Beware! For example, given two sets S, T that have sizes |S|, |T| respectively, we are not guaranteed that either of |S|, |T| is larger than the other.

We say that $|S| \leq |T|$ if there is an injective (one-to-one) function from S into T. We say |S| = |T| if there is a bijective (one-to-one and onto) function from S into T. In this latter case we say that S, T are equicardinal.

Cantor-Schröder-Bernstein Theorem [ca. 1900]

Let S, T be any two sets. If $|S| \leq |T|$ and $|T| \leq |S|$, then |T| = |S|.

Set $S = \mathbb{N}_0$, the set of nonnegative integers; $T = \mathbb{Z}$, the set of integers. We prove that S, T are equicardinal.

CSB method: Set
$$f: S \to T$$
 via $f(x) = x$; this is injective, so $|S| \le |T|$. Set $g(x) = \begin{cases} x^2 & x \ge 0 \\ x^2 + 1 & x < 0 \end{cases}$

for the reverse $g: T \to S$. To prove g is injective, suppose that g(x) = g(x'). If x, x' are both positive, then $x^2 = (x')^2$, hence we take square roots and use that both are positive to find x = x'. If x, x' are both negative, then $x^2 + 1 = (x')^2 + 1$, and again we find x = x'. Finally, if x, x' are of different signs, then there are two perfect squares (namely f(x), f(x')) whose difference is one. This is only possible for 0, 1, but then x = x' = 0. Hence g is injective, and $|T| \leq |S|$. By the CSB theorem, |S| = |T|. Note that neither of f, g are bijective.

Direct method: Set $f: T \to S$ via $f(x) = \begin{cases} 2x & x \geq 0 \\ -1 - 2x & x < 0 \end{cases}$. To prove that f is injective, suppose that f(x) = f(x'). If x, x' are both positive, then 2x = 2x', and hence x = x'. If x, x' are both negative, then -1 - 2x = -1 - 2x', and again x = x'. However, x, x' cannot be of opposite signs since then one of f(x), f(x') would be odd and the other would be even. To prove that f is surjective, let $y \in S$. If f(x) = x' is even, then set f(x) = x' is a bijection and f(x) = x' is odd, then set f(x) = x' is a bijection and f(x) = x' is a bijection and f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bifection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x' in the set f(x) = x' is a bijection and f(x) = x' in the set f(x) = x'

Exercises:

- 1. Prove that $\{1, 2, 3\}$ is equicardinal with $\{2, 3, 4\}$.
- 2. Prove that $2\mathbb{Z}$ (the set of even integers) is equicardinal with \mathbb{Z} .
- 3. Set $S = \mathbb{Z} 2\mathbb{Z}$, the set of odd integers. Prove that S is equicardinal with \mathbb{Z} .
- 4. Prove that \mathbb{N} (the set of positive integers) is equicardinal with \mathbb{Z} .
- 5. Suppose that R is equicardinal with S, and S is equicardinal with T. Prove that R is equicardinal with T.
- 6. Prove that the real interval (0,1) is equicardinal with the real interval (a,b) for any a < b.
- 7. Prove that the real interval (0,1) is equicardinal with \mathbb{R} , the set of all reals. Hint: $\tan: (-\pi/2, \pi/2) \to \mathbb{R}$.
- 8. Prove that \mathbb{Q}^+ (the set of positive fractions) is equicardinal with \mathbb{N} . Hint: arrange \mathbb{Q}^+ in a diagram, then take a path through this diagram.