MATH601 Spring 2008 Handout 7

Unit 4: Cardinals

A cardinal is a number that measures the size of a set. For set S, we use $|S|$ to denote the cardinal that measures the size of S. Important comment: Our number sense breaks down with infinite cardinals. Beware! For example, given two sets S, T that have sizes $|S|,|T|$ respectively, we are not guaranteed that either of $|S|,|T|$ is larger than the other.

We say that $|S| \leq|T|$ if there is an injective (one-to-one) function from S into T. We say $|S|=|T|$ if there is a bijective (one-to-one and onto) function from S into T. In this latter case we say that S, T are equicardinal.

Cantor-Schröder-Bernstein Theorem [ca. 1900]

Let S, T be any two sets. If $|S| \leq|T|$ and $|T| \leq|S|$, then $|T|=|S|$.
Set $S=\mathbb{N}_{0}$, the set of nonnegative integers; $T=\mathbb{Z}$, the set of integers. We prove that S, T are equicardinal. $C S B$ method: Set $f: S \rightarrow T$ via $f(x)=x$; this is injective, so $|S| \leq|T|$. Set $g(x)=\left\{\begin{array}{ll}x^{2} & x \geq 0 \\ x^{2}+1 & x<0\end{array}\right.$, for the reverse $g: T \rightarrow S$. To prove g is injective, suppose that $g(x)=g\left(x^{\prime}\right)$. If x, x^{\prime} are both positive, then $x^{2}=\left(x^{\prime}\right)^{2}$, hence we take square roots and use that both are positive to find $x=x^{\prime}$. If x, x^{\prime} are both negative, then $x^{2}+1=\left(x^{\prime}\right)^{2}+1$, and again we find $x=x^{\prime}$. Finally, if x, x^{\prime} are of different signs, then there are two perfect squares (namely $f(x), f\left(x^{\prime}\right)$) whose difference is one. This is only possible for 0,1 , but then $x=x^{\prime}=0$. Hence g is injective, and $|T| \leq|S|$. By the CSB theorem, $|S|=|T|$. Note that neither of f, g are bijective.
Direct method: Set $f: T \rightarrow S$ via $f(x)=\left\{\begin{array}{ll}2 x & x \geq 0 \\ -1-2 x & x<0\end{array}\right.$. To prove that f is injective, suppose that $f(x)=f\left(x^{\prime}\right)$. If x, x^{\prime} are both positive, then $2 x=2 x^{\prime}$, and hence $x=x^{\prime}$. If x, x^{\prime} are both negative, then $-1-2 x=-1-2 x^{\prime}$, and again $x=x^{\prime}$. However, x, x^{\prime} cannot be of opposite signs since then one of $f(x), f\left(x^{\prime}\right)$ would be odd and the other would be even. To prove that f is surjective, let $y \in S$. If y is even, then set $x=y / 2 \in T$; we have $f(x)=y$. If y is odd, then set $x=\frac{-y-1}{2}$. Note that $x<0$ so $f(x)=-1-2\left(\frac{-y-1}{2}\right)=y$. Hence f is a bijection and $|S|=|T|$.

Exercises:

1. Prove that $\{1,2,3\}$ is equicardinal with $\{2,3,4\}$.
2. Prove that $2 \mathbb{Z}$ (the set of even integers) is equicardinal with \mathbb{Z}.
3. Set $S=\mathbb{Z}-2 \mathbb{Z}$, the set of odd integers. Prove that S is equicardinal with \mathbb{Z}.
4. Prove that \mathbb{N} (the set of positive integers) is equicardinal with \mathbb{Z}.
5. Suppose that R is equicardinal with S, and S is equicardinal with T. Prove that R is equicardinal with T.
6. Prove that the real interval $(0,1)$ is equicardinal with the real interval (a, b) for any $a<b$.
7. Prove that the real interval $(0,1)$ is equicardinal with \mathbb{R}, the set of all reals.

Hint: $\tan :(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}$.
8. Prove that \mathbb{Q}^{+}(the set of positive fractions) is equicardinal with \mathbb{N}.

Hint: arrange \mathbb{Q}^{+}in a diagram, then take a path through this diagram.

