Addition is defined as: $x+y=\prec x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R} \succ$
Compute $0+0=\prec 0^{L}+0,0+0^{L} \mid 0^{R}+0,0+0^{R} \succ$. Since $R(0)=L(0)=\emptyset, 0+0=\prec \mid \succ=0$.
Compute $0+1=\prec 0^{L}+1,0+1^{L}\left|0^{R}+1,0+1^{R} \succ=\prec 0+1^{L}\right| \succ=\prec 0+0|\succ=\prec 0| \succ=1$.
Compute $1+0=\prec 1^{L}+0,1+0^{L}\left|1^{R}+0,1+0^{R} \succ=\prec 1^{L}+0\right| \succ=\prec 0+0|\succ=\prec 0| \succ=1$.
Compute $1+1=\prec 1^{L}+1,1+1^{L}\left|1^{R}+1,1+1^{R} \succ=\prec 0+1,0+1\right| \succ=\prec 1,1|\succ=\prec 1| \succ=2$.
Compute $-1+1 / 2=\prec-1^{L}+1 / 2,-1+1 / 2^{L}\left|-1^{R}+1 / 2,-1+1 / 2^{R} \succ=\prec-1+0\right| 0+1 / 2,-1+1 \succ$:
$-1+0=\prec-1^{L}+0,-1+0^{L}\left|-1^{R}+0,-1+0^{R} \succ=\prec\right| 0+0 \succ=\prec \mid 0 \succ=-1$
$0+1 / 2=\prec 0^{L}+1 / 2,0+1 / 2^{L}\left|0^{R}+1 / 2,0+1 / 2^{R} \succ=\prec 0+0\right| 0+1 \succ=\prec 0 \mid 1 \succ=1 / 2$
$-1+1=\prec-1^{L}+1,-1+1^{L}\left|-1^{R}+1,-1+1^{R} \succ=\prec-1+0\right| 0+1 \succ=\prec-1 \mid 1 \succ=0$
Note: $\prec-1 \mid 1 \succ=0$ by the Seniority Principle.
Hence $-1+1 / 2=\prec-\left.1\right|^{1} / 2,0 \succ$. Because $1 / 2>0$, we apply exercise 8 from the previous handout. Hence $-1+1 / 2=\prec-1 \mid 0 \succ=-1 / 2$.

We now introduce Surreal Induction. To prove some property $P(x, y)$, we assume as inductive hypothesis every possible combination where x, y are replaced by any of their left or right sets. That is, we assume as inductive hypothesis any or all of $P\left(x^{L}, y\right), P\left(x^{R}, y\right), P\left(x, y^{L}\right), P\left(x, y^{R}\right)$, $P\left(x^{L}, y^{L}\right), P\left(\left(x^{L}\right)^{L},\left(y^{L}\right)^{R}\right), \ldots$ In addition, because surreal numbers are built from nothing, there will often be no base case required.

Thm 1. For every surreal x, prove $x \geq x$ without the Seniority Principle.
Proof. First note that $x \geq x$ is equivalent to $x^{R}>x>x^{L}$. Let $a \in R(x), b \in L(x)$. We must prove $a>x>b$. By surreal induction, $a \geq a$, so $a>x$. By surreal induction, $b \geq b$, so $x>b$.

Thm 2. For every surreal x, y, prove that $x+y=y+x$.
Proof. $x+y=\prec x^{L}+y, x+y^{L} \mid x^{R}+y, x+y^{R} \succ$. Applying the surreal inductive hypothesis on all four parts, we have $x+y=\prec y+x^{L}, y^{L}+x\left|y+x^{R}, y^{R}+x \succ=\prec y^{L}+x, y+x^{L}\right| y^{R}+x, y+x^{R} \succ=y+x$.

Thm 3. For every surreal x, y, z with $x \geq y$ and $y \geq z$, prove that $x \geq z$. Further, equality holds (i.e. $x=z$) iff both $x=y$ and $y=z$.

Proof. Suppose that $x \geq y \geq z$. Because $x \geq y, x^{R}>y$; hence by surreal induction $x^{R}>z$. Because $y \geq z, y>z^{L}$; hence by surreal induction $x>z^{L}$. Combining these we get $x \geq z$.
Suppose now that $x>y$. Case (i): there is some $a \in R(y)$ with $x \geq a$. Since $y \geq z, a>z$. Hence $x \geq a>z$, so by surreal induction $x>z$. Case (ii): there is some $b \in L(x)$ with $b \geq y$. Then $b \geq y \geq z$, so by surreal induction $b \geq z$. Hence $x>z$.
The remainder of this proof is left as an exercise.

For every surreal x, we define $-x=\prec-x^{R} \mid-x^{L} \succ$.
Thm 4. For every surreal x, prove that $-(-x)=x$.
Proof. Set $y=-x, z=-y . L(z)=\{-a \mid a \in R(y)\}=\{-(-b) \mid b \in L(x)\}=L(x)$ by surreal induction. Similarly, $R(z)=\{-c \mid c \in L(y)\}=\{-(-d) \mid d \in R(x)\}=R(x)$ by surreal induction.

Thm 5. For every surreal x, y, prove that $x \geq y$ iff $-y \geq-x$.
Proof. Suppose that $x \geq y$. Hence $x^{R}>y$ and $x>y^{L}$, hence $y \ngtr x^{R}$ and $y^{L} \ngtr x$, hence (by surreal induction) $-x^{R} \nsupseteq-y$ and $-x \ngtr-y^{L}$, hence $-y>-x^{R}$ and $-y^{L}>-x$, hence $-y \geq-x$. Suppose now that $-y \geq-x$. Hence $(-y)^{R}>-x$ and $-y>(-x)^{L}$, hence $-x \ngtr(-y)^{R}$ and $(-x)^{L} \ngtr-y$, hence (by surreal induction) $-(-y)^{R} \nsupseteq-(-x)$ and $-(-y) \ngtr-(-x)^{L}$, hence $-\left(-\left(y^{L}\right)\right) \ngtr-(-x)$ and $-(-y) \ngtr-\left(-\left(x^{R}\right)\right.$), hence (by Thm. 4) $y^{L} \ngtr x$ and $y \ngtr x^{R}$, hence $x>y^{L}$ and $x^{R}>y$, hence $x \geq y$.

Thm 6. For every surreal x, y, z, w with $x \geq y$ and $w \geq z$, prove that $x+w \geq y+z$. Further, equality holds $(x+w=y+z)$ iff both $x=y$ and $w=z$.
Proof. Suppose that $x \geq y$ and $w \geq z$. Therefore $x^{R}>x \geq y$ and $w^{R}>w \geq z$; hence by surreal induction $x^{R}+w>y+z$ and $x+w^{R}>y+z$ and therefore $(x+w)^{R}>y+z$. Also, $x \geq y>y^{L}$ and $w \geq z>z^{L}$; hence by surreal induction $x+w>y^{L}+z$ and $x+w>y+z^{L}$ and therefore $x+w>(y+z)^{L}$. We have verified (i) and (ii) and hence $x+w \geq y+z$.
Suppose now that $x>y$. Case (i): let $a \in R(y)$ with $x \geq a$. By surreal induction, $x+w \geq a+z$. But $a+z \in R(y+z)$, so $x+w>y+z$. Case (ii): let $b \in L(x)$ with $b \geq y$. By surreal induction, $b+w \geq y+z$. But $b+w \in L(x+w)$, so $x+w>y+z$.
The remainder of this proof is left as an exercise.
Exercises:

1. Compute $-1+1,1 / 2+1 / 2,-1+(-2), 1 / 4+3 / 4$.
2. Compute $\omega+1$ and show that it equals $\prec \omega \mid \succ$. Calculate $\prec 1,2, \ldots \mid \omega \succ+1$ and show that it equals ω. Calculate $1 / 2 \omega+1 / 2 \omega$ and show that it equals $1 / \omega$.
3. For every surreal x, prove that $0+x=x$.
4. For every surreal x, y, z prove that $(x+y)+z=x+(y+z)$.
5. Complete the proof of Thm. 3. You need to prove that $y>z$ implies $x>z$, and that $x=y$ and $y=z$ together imply that $x=z$.
6. Complete the proof of Thm 6. You need to prove that $w>z$ implies $x+w>y+z$, and that $x=y$ and $w=z$ together imply that $x+w=y+z$.
7. For every surreal x, y, prove that $-(x+y)=(-x)+(-y)$.

Hint: Use surreal induction and the definitions of addition, negation repeatedly.
8. For every surreal x, prove that $x+(-x)=0$.

Hint: Prove $x+(-x) \geq 0$ and $0 \geq x+(-x)$. Use surreal induction and Thms 4,5 .
9. For every surreal x, y, z, prove that $x \geq y$ iff $x+z \geq y+z$.

Hint: For one direction, use Thms 1, 6. For the other direction, use Thms 1,6 and exercise 5.

