$\begin{array}{l} \mbox{Addition is defined as: } x+y = \prec x^L+y, x+y^L | x^R+y, x+y^R \succ \\ \mbox{Compute } 0+0 = \prec 0^L+0, 0+0^L | 0^R+0, 0+0^R \succ. \mbox{ Since } R(0) = L(0) = \emptyset, 0+0 = \prec |\succ=0. \\ \mbox{Compute } 0+1 = \prec 0^L+1, 0+1^L | 0^R+1, 0+1^R \succ = \prec 0+1^L | \succ = \prec 0+0 | \succ = \prec 0 | \succ=1. \\ \mbox{Compute } 1+0 = \prec 1^L+0, 1+0^L | 1^R+0, 1+0^R \succ = \prec 1^L+0 | \succ = \prec 0+0 | \succ = \prec 0 | \succ=1. \\ \mbox{Compute } 1+1 = \prec 1^L+1, 1+1^L | 1^R+1, 1+1^R \succ = \prec 0+1, 0+1 | \succ = \prec 1, 1 | \succ = \prec 1 | \succ=2. \\ \mbox{Compute } -1+1/2 = \prec -1^L+1/2, -1+1/2^L | -1^R+1/2, -1+1/2^R \succ = \prec -1+0 | 0+1/2, -1+1 \succ: \\ -1+0 = \prec -1^L+0, -1+0^L | -1^R+0, -1+0^R \succ = \prec 0+0 | 0+1 \succ = \prec 0 | 1 \succ=1/2 \\ 0+1/2 = \prec 0^L+1/2, 0+1/2^L | 0^R+1/2, 0+1/2^R \succ = \prec 0+0 | 0+1 \succ = \prec -1 | 1 \succ = 0 \\ \mbox{Note: } \prec -1 | 1 \succ = 0 \text{ by the Seniority Principle.} \end{array}$

Hence $-1 + \frac{1}{2} = -\frac{1}{1/2}, 0 \succ$. Because $\frac{1}{2} > 0$, we apply exercise 8 from the previous handout. Hence $-1 + \frac{1}{2} = -\frac{1}{0} \succ = -\frac{1}{2}$.

We now introduce Surreal Induction. To prove some property P(x, y), we assume as inductive hypothesis every possible combination where x, y are replaced by any of their left or right sets. That is, we assume as inductive hypothesis any or all of $P(x^L, y), P(x^R, y), P(x, y^L), P(x, y^R),$ $P(x^L, y^L), P((x^L)^L, (y^L)^R), \ldots$ In addition, because surreal numbers are built from nothing, there will often be no base case required.

Thm 1. For every surreal x, prove $x \ge x$ without the Seniority Principle. *Proof.* First note that $x \ge x$ is equivalent to $x^R > x > x^L$. Let $a \in R(x), b \in L(x)$. We must prove a > x > b. By surreal induction, $a \ge a$, so a > x. By surreal induction, $b \ge b$, so x > b. \Box

Thm 2. For every surreal x, y, prove that x + y = y + x. *Proof.* $x+y = \prec x^L + y, x+y^L | x^R + y, x+y^R \succ$. Applying the surreal inductive hypothesis on all four parts, we have $x+y = \prec y+x^L, y^L+x|y+x^R, y^R+x \succ = \prec y^L+x, y+x^L | y^R+x, y+x^R \succ = y+x$. \Box

Thm 3. For every surreal x, y, z with $x \ge y$ and $y \ge z$, prove that $x \ge z$. Further, equality holds (i.e. x = z) iff both x = y and y = z.

Proof. Suppose that $x \ge y \ge z$. Because $x \ge y$, $x^R > y$; hence by surreal induction $x^R > z$. Because $y \ge z$, $y > z^L$; hence by surreal induction $x > z^L$. Combining these we get $x \ge z$.

Suppose now that x > y. Case (i): there is some $a \in R(y)$ with $x \ge a$. Since $y \ge z$, a > z. Hence $x \ge a > z$, so by surreal induction x > z. Case (ii): there is some $b \in L(x)$ with $b \ge y$. Then $b \ge y \ge z$, so by surreal induction $b \ge z$. Hence x > z.

The remainder of this proof is left as an exercise.

For every surreal x, we define $-x = \prec -x^R | -x^L \succ$.

Thm 4. For every surreal x, prove that -(-x) = x.

Proof. Set y = -x, z = -y. $L(z) = \{-a | a \in R(y)\} = \{-(-b) | b \in L(x)\} = L(x)$ by surreal induction. Similarly, $R(z) = \{-c | c \in L(y)\} = \{-(-d) | d \in R(x)\} = R(x)$ by surreal induction. \Box

Thm 5. For every surreal x, y, prove that $x \ge y$ iff $-y \ge -x$.

Proof. Suppose that $x \ge y$. Hence $x^R > y$ and $x > y^L$, hence $y \not\ge x^R$ and $y^L \not\ge x$, hence (by surreal induction) $-x^R \not\ge -y$ and $-x \not\ge -y^L$, hence $-y > -x^R$ and $-y^L > -x$, hence $-y \ge -x$. Suppose now that $-y \ge -x$. Hence $(-y)^R > -x$ and $-y > (-x)^L$, hence $-x \not\ge (-y)^R$ and $(-x)^L \not\ge -y$, hence (by surreal induction) $-(-y)^R \not\ge -(-x)$ and $-(-y) \not\ge -(-x)^L$, hence $-(-(y^L)) \not\ge -(-x)^L$ and $-(-y) \not\ge -(-(x^R))$, hence (by Thm. 4) $y^L \not\ge x$ and $y \not\ge x^R$, hence $x > y^L$ and $x^R > y$, hence $x \ge y$.

Thm 6. For every surreal x, y, z, w with $x \ge y$ and $w \ge z$, prove that $x + w \ge y + z$. Further, equality holds (x + w = y + z) iff both x = y and w = z.

Proof. Suppose that $x \ge y$ and $w \ge z$. Therefore $x^R > x \ge y$ and $w^R > w \ge z$; hence by surreal induction $x^R + w > y + z$ and $x + w^R > y + z$ and therefore $(x + w)^R > y + z$. Also, $x \ge y > y^L$ and $w \ge z > z^L$; hence by surreal induction $x + w > y^L + z$ and $x + w > y + z^L$ and therefore $x + w > (y + z)^{L}$. We have verified (i) and (ii) and hence $x + w \ge y + z$.

Suppose now that x > y. Case (i): let $a \in R(y)$ with $x \ge a$. By surreal induction, $x + w \ge a + z$. But $a + z \in R(y + z)$, so x + w > y + z. Case (ii): let $b \in L(x)$ with $b \ge y$. By surreal induction, $b+w \ge y+z$. But $b+w \in L(x+w)$, so x+w > y+z.

The remainder of this proof is left as an exercise.

Exercises:

- 1. Compute -1 + 1, $\frac{1}{2} + \frac{1}{2}$, -1 + (-2), $\frac{1}{4} + \frac{3}{4}$.
- 2. Compute $\omega + 1$ and show that it equals $\prec \omega \succ$. Calculate $\prec 1, 2, \ldots, \omega \succ + 1$ and show that it equals ω . Calculate $1/2\omega + 1/2\omega$ and show that it equals $1/\omega$.
- 3. For every surreal x, prove that 0 + x = x.
- 4. For every surreal x, y, z prove that (x + y) + z = x + (y + z).
- 5. Complete the proof of Thm. 3. You need to prove that y > z implies x > z, and that x = yand y = z together imply that x = z.
- 6. Complete the proof of Thm 6. You need to prove that w > z implies x + w > y + z, and that x = y and w = z together imply that x + w = y + z.
- 7. For every surreal x, y, prove that -(x + y) = (-x) + (-y). Hint: Use surreal induction and the definitions of addition, negation repeatedly.
- 8. For every surreal x, prove that x + (-x) = 0. Hint: Prove $x + (-x) \ge 0$ and $0 \ge x + (-x)$. Use surreal induction and Thms 4.5.
- 9. For every surreal x, y, z, prove that $x \ge y$ iff $x + z \ge y + z$. Hint: For one direction, use Thms 1, 6. For the other direction, use Thms 1,6 and exercise 5.