MATH601 Spring 2008 Handout 13: Introduction Unit 6: Surreal Numbers

Donald Knuth 1938-Stanford Renowned computer scientist, T_EX Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness

John Horton Conway 1937-Princeton Renowned mathematician, Game of Life, Doomsday

Surreal numbers, S, first described in a work of fiction, were discovered by John Conway about 35 years ago. They nicely extend most of the ideas we've studied thus far in this course: they are built from nothing, contain the reals/hyperreals/ordinals, and are an ordered field (e.g., for any $x, y \in S$, either $x \leq y$ or $y \leq x$ or both).

Let $L, R \subseteq \mathbb{S}$, that satisfy the important condition: $\forall a \in L, \forall b \in R, a < b$. We define the number $\prec L|R \succ \in \mathbb{S}$. We use notation $x = \prec L(x)|R(x) \succ$; note that L(x), R(x) are sets. We also write x^L to denote the "typical" element (i.e. every element) of L(x); e.g. $x^L \geq 3$ means every element of L(x) is ≥ 3 . x^R is used similarly for the typical element of R(x). x is a surreal number if $x^L < x^R$. For notational convenience we will drop curly braces: $x = \prec \{1, 2\}|\{3\} \succ = \prec 1, 2|3 \succ has L(x) = \{1, 2\}, R(x) = \{3\}$.

There are several differences from the method we used to build \mathbb{R} . L, R are themselves subsets of \mathbb{S} – when we built \mathbb{R} , they were subsets of a different field \mathbb{Q} . Also, L, R can be small. In fact, if $a < b, \forall a, b | c \succ = \forall b | c \succ$ (this is proved in the exercises), so we can often discard parts of L, R and make them quite small indeed.

All elements of S have a birthday, which is an ordinal number. They are given names, in the following table. They are built only out of surreals that have been born previously (i.e. have a smaller birthday). Note: This table just gives names, these names alone do not justify the arithmetic you would expect (i.e. 1 + 1 = 2), which we will do later. However, the intuition you have for these numbers is generally correct.

Birthday 0: $0 = \prec \mid \succ$ Birthday 1: $-1 = \prec \mid 0 \succ$, $1 = \prec 0 \mid \succ$ Birthday 2: $-2 = \prec \mid -1 \succ$, $-\frac{1}{2} = \prec -1 \mid 0 \succ$, $\frac{1}{2} = \prec 0 \mid 1 \succ$, $2 = \prec 1 \mid \succ$ Birthday 3: $-3 = \prec \mid -2 \succ$, $-\frac{3}{2} = \prec -2 \mid -1 \succ$, $\frac{3}{4} = \prec \frac{1}{2} \mid 1 \succ$, and 5 more Birthday ω : $\omega = \prec 1, 2, 3, \ldots \mid \succ$, $\frac{1}{\omega} = \prec 0 \mid \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \succ$, the rest of \mathbb{R} (irrationals, $\frac{1}{3}$, etc.) Birthday $\omega + 1$: $\omega + 1 = \prec \omega \mid \succ$, $\frac{1}{2\omega} = \prec 0 \mid \frac{1}{\omega} \succ$, $\omega - 1 = \prec 1, 2, 3, \ldots \mid \omega \succ$ Birthday $\omega + \omega$: $\frac{\omega}{2} = \prec 1, 2, 3, \ldots \mid \omega, \omega - 1, \omega - 2, \ldots \succ$, $\frac{1}{\omega^2} = \prec 0 \mid \frac{1}{\omega}, \frac{1}{2\omega}, \frac{1}{4\omega}, \ldots \succ$

The largest surreal with birthday x is exactly the ordinal x. Those elements with finite birthdays are *dyadic* rationals; fractions whose denominator is a power of two. They can be expressed in binary arithmetic with a terminating expansion, e.g. 1.11 in binary means $1^{3}/4$.

The above constructions give names for the "simplest" pairs of sets L, R. If L, R are more complicated, we can still determine the name $\prec L|R \succ$ with the following.

Seniority Principle: $x = \prec L | R \succ$ is the earliest-born surreal that satisfies $x^L < x < x^R$. For example, $\prec 1/2 | 7 \succ = 1$, $\prec | -3/2 \succ = -2$, $\prec 5 | \omega \succ = 6$. Given $x, y \in \mathbb{S}$ we define $x \ge y$ and x > y as follows:

	(i)		(ii)
$x \ge y$:	$\forall a \in R(x), a > y$	AND	$\forall b \in L(y), x > b$
$x \ge y$:	$x^R > y$	AND	$x > y^L$
x > y:	$\exists a \in R(y), x \ge a$	OR	$\exists b \in L(x), b \ge y$

 $x \leq y$ means $y \geq x$, and x < y means y > x. x = y means $x \geq y$ and $y \geq x$.

 $x \ge y$ has two equivalent formulations; x > y doesn't. x > y iff $y \not\ge x$; $x \ge y$ iff $y \ne x$.

Note: if R(x) is empty, then (i) of $x \ge y$ is considered vacuously true (similarly for L(y) and (ii)).

Check $1 \ge 0$: (i) R(1) is empty, so $1^R > 0$ is vacuously true. (ii) L(0) is empty, so $1 > 0^L$ vacuously.

Check $0 \ge 1$: (i) R(0) is empty, so $0^R > 1$ vacuously. (ii) $L(1) = \{0\}$, which contains an element ≥ 0 . Hence $0 \ge 1$. Together with the previous we have shown that 1 > 0.

Check $1 \ge 1$: (i) R(1) is empty, so $1^R > 1$ vacuously. (ii) $L(1) = \{0\}$, each element of which is < 1, since we proved above that 0 < 1. Hence $1 \le 1$, and therefore 1 = 1. Nice to know!

Check $1 \ge 1/2$: (i) R(1) is empty, so $1^R > 1/2$ vacuously. (ii) $L(1/2) = \{0\}$, each element of which is < 1, since we proved 0 < 1. Hence $1 \ge 1/2$.

Check $1/2 \ge 1$: (i) $R(1/2) = \{1\}$. This contains an element, namely 1, with $1 \ge 1$. Hence $1/2 \ge 1$. With the previous we have shown that 1 > 1/2. It is not necessary to check (ii), since BOTH (i) and (ii) are required for the inequality.

Check $3/4 \ge 1/2$: (i) $R(3/4) = \{1\}$, so we need to verify that 1 > 1/2. We did this already. (ii) $L(1/2) = \{0\}$, so we need to verify that 3/4 > 0.

Check 3/4 > 0: (i) R(0) is empty, so this won't work. (ii) $L(3/4) = \{1/2\}$. We now need to determine if $1/2 \ge 0$. If so, we will have shown 3/4 > 0, and hence $3/4 \ge 1/2$.

Check $1/2 \ge 0$: (i) $R(1/2) = \{1\}$. We have already shown $0 \ge 1$. (ii) L(0) is empty, so $1/2 > 0^L$ vacuously. Hence $1/2 \ge 0$.

Exercises:

- 1. Find the remaining elements of S with birthday 3.
- 2. For each of the following names, find their birthdays and L, R sets: 35, 3/16, $2+1/\omega$, $\sqrt{2}+1/\omega$, 1/3, $\omega+1/2$
- 3. Apply the seniority principle to find the names for: $\prec 1/\omega|1/2 \succ$, $\prec 1/\omega|\omega \succ$, $\prec -\omega|1/\omega \succ$, $\prec 1/3|1/2 \succ$, $\prec 1/7|1/5 \succ$, $\prec e|\pi \succ$, $\prec e|\succ$, $\prec |e \succ$
- 4. Check if $1 \ge 2, 2 \ge 1, 3/4 \ge 1, 3/4 \ge 1/4, 1/2 \ge -1/2, 5 \ge \omega, \omega \ge 5, 1/\omega \ge 0, \omega 1 \ge \omega/2.$
- 5. Check if 1 > 2, 2 > 1, 3/4 > 1, 3/4 > 1/4, 1/2 > -1/2, $5 > \omega$, $\omega > 5$, $1/\omega > 0$, $\omega 1 > \omega/2$. Do not use the results of the previous exercise.
- 6. Using induction, prove that $n \ge 0$ and $1/2^n \ge 0$, for every natural n.
- 7. For every $x \in S$, prove that $x \ge x$. You will need the seniority principle.
- 8. Suppose that a, b, c are surreals with a < b < c. Prove that $\prec a, b|c \succ = \prec b|c \succ$. HINT:Prove $\prec a, b|c \succ \leq \prec b|c \succ$ and $\prec b|c \succ \leq \prec a, b|c \succ$.
- 9. For k finite, put all surreals with birthday $\langle k \rangle$ on a number line. Exactly one surreal with birthday k will fit into each gap, and one more on either side. Using this fact, determine with proof how many surreals have birthday k.