

Donald Knuth 1938-
Stanford
Renowned computer scientist, TEX
Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness

John Horton Conway 1937-
Princeton
Renowned mathematician, Game of Life, Doomsday

Surreal numbers, \mathbb{S}, first described in a work of fiction, were discovered by John Conway about 35 years ago. They nicely extend most of the ideas we've studied thus far in this course: they are built from nothing, contain the reals/hyperreals/ordinals, and are an ordered field (e.g., for any $x, y \in \mathbb{S}$, either $x \leq y$ or $y \leq x$ or both).

Let $L, R \subseteq \mathbb{S}$, that satisfy the important condition: $\forall a \in L, \forall b \in R, a<b$. We define the number $\prec L \mid R \succ \in \mathbb{S}$. We use notation $x=\prec L(x) \mid R(x) \succ$; note that $L(x), R(x)$ are sets. We also write x^{L} to denote the "typical" element (i.e. every element) of $L(x)$; e.g. $x^{L} \geq 3$ means every element of $L(x)$ is ≥ 3. x^{R} is used similarly for the typical element of $R(x) . x$ is a surreal number if $x^{L}<x^{R}$. For notational convenience we will drop curly braces: $x=\prec\{1,2\}|\{3\} \succ=\prec 1,2| 3 \succ$ has $L(x)=\{1,2\}, R(x)=\{3\}$.

There are several differences from the method we used to build $\mathbb{R} . L, R$ are themselves subsets of \mathbb{S} - when we built \mathbb{R}, they were subsets of a different field \mathbb{Q}. Also, L, R can be small. In fact, if $a<b, \prec a, b|c \succ=\prec b| c \succ$ (this is proved in the exercises), so we can often discard parts of L, R and make them quite small indeed.

All elements of \mathbb{S} have a birthday, which is an ordinal number. They are given names, in the following table. They are built only out of surreals that have been born previously (i.e. have a smaller birthday). Note: This table just gives names, these names alone do not justify the arithmetic you would expect (i.e. $1+1=2$), which we will do later. However, the intuition you have for these numbers is generally correct.

Birthday 0: $0=\prec \mid \succ$
Birthday 1: $-1=\prec|0 \succ, 1=\prec 0| \succ$
Birthday 2: $-2=\prec|-1 \succ,-1 / 2=\prec-1| 0 \succ, 1 / 2=\prec 0|1 \succ, 2=\prec 1| \succ$
Birthday 3: $-3=\prec|-2 \succ,-3 / 2=\prec-2|-1 \succ, 3 / 4=\prec 1 / 2 \mid 1 \succ$, and 5 more
Birthday $\omega: \omega=\prec 1,2,3, \ldots|\succ, 1 / \omega=\prec 0|^{1 / 2}, 1 / 4,1 / 8, \ldots \succ$, the rest of \mathbb{R} (irrationals, $1 / 3$, etc.)
Birthday $\omega+1: \omega+1=\prec \omega|\succ, 1 / 2 \omega=\prec 0| 1 / \omega \succ, \omega-1=\prec 1,2,3, \ldots \mid \omega \succ$
Birthday $\omega+\omega: \omega / 2=\prec 1,2,3, \ldots\left|\omega, \omega-1, \omega-2, \ldots \succ, 1 / \omega^{2}=\prec 0\right| 1 / \omega, 1 / 2 \omega, 1 / 4 \omega, \ldots \succ$
The largest surreal with birthday x is exactly the ordinal x. Those elements with finite birthdays are dyadic rationals; fractions whose denominator is a power of two. They can be expressed in binary arithmetic with a terminating expansion, e.g. 1.11 in binary means $13 / 4$.

The above constructions give names for the "simplest" pairs of sets L, R. If L, R are more complicated, we can still determine the name $\prec L \mid R \succ$ with the following.

Seniority Principle: $x=\prec L \mid R \succ$ is the earliest-born surreal that satisfies $x^{L}<x<x^{R}$.
For example, $\prec 1 / 2|7 \succ=1, \quad \prec|-3 / 2 \succ=-2, \quad \prec 5 \mid \omega \succ=6$.

Given $x, y \in \mathbb{S}$ we define $x \geq y$ and $x>y$ as follows:

	(i)		(ii)
$x \geq y:$	$\forall a \in R(x), a>y$	AND	$\forall b \in L(y), x>b$
$x \geq y:$	$x^{R}>y$	AND	$x>y^{L}$
$x>y:$	$\exists a \in R(y), x \geq a$	OR	$\exists b \in L(x), b \geq y$

$x \leq y$ means $y \geq x$, and $x<y$ means $y>x . x=y$ means $x \geq y$ and $y \geq x$.
$x \geq y$ has two equivalent formulations; $x>y$ doesn’t. $x>y$ iff $y \ngtr x ; x \geq y$ iff $y \ngtr x$.
Note: if $R(x)$ is empty, then (i) of $x \geq y$ is considered vacuously true (similarly for $L(y)$ and (ii)).

Check $1 \geq 0$: (i) $R(1)$ is empty, so $1^{R}>0$ is vacuously true. (ii) $L(0)$ is empty, so $1>0^{L}$ vacuously.
Check $0 \geq 1$: (i) $R(0)$ is empty, so $0^{R}>1$ vacuously. (ii) $L(1)=\{0\}$, which contains an element ≥ 0. Hence $0 \ngtr 1$. Together with the previous we have shown that $1>0$.
Check $1 \geq 1$: (i) $R(1)$ is empty, so $1^{R}>1$ vacuously. (ii) $L(1)=\{0\}$, each element of which is <1, since we proved above that $0<1$. Hence $1 \leq 1$, and therefore $1=1$. Nice to know!

Check $1 \geq 1 / 2$: (i) $R(1)$ is empty, so $1^{R}>1 / 2$ vacuously. (ii) $L(1 / 2)=\{0\}$, each element of which is <1, since we proved $0<1$. Hence $1 \geq 1 / 2$.
Check $1 / 2 \geq 1$: (i) $R(1 / 2)=\{1\}$. This contains an element, namely 1 , with $1 \geq 1$. Hence $1 / 2 \nsupseteq 1$. With the previous we have shown that $1>1 / 2$. It is not necessary to check (ii), since BOTH (i) and (ii) are required for the inequality.

Check $3 / 4 \geq 1 / 2$: (i) $R(3 / 4)=\{1\}$, so we need to verify that $1>1 / 2$. We did this already. (ii) $L(1 / 2)=\{0\}$, so we need to verify that $3 / 4>0$.

Check $3 / 4>0$: (i) $R(0)$ is empty, so this won't work. (ii) $L(3 / 4)=\{1 / 2\}$. We now need to determine if $1 / 2 \geq 0$. If so, we will have shown $3 / 4>0$, and hence $3 / 4 \geq 1 / 2$.

Check $1 / 2 \geq 0$: (i) $R(1 / 2)=\{1\}$. We have already shown $0 \nsupseteq 1$. (ii) $L(0)$ is empty, so $1 / 2>0^{L}$ vacuously. Hence $1 / 2 \geq 0$.

Exercises:

1. Find the remaining elements of \mathbb{S} with birthday 3 .
2. For each of the following names, find their birthdays and L, R sets: $35,3 / 16,2+1 / \omega, \sqrt{2}+1 / \omega, 1 / 3, \omega+1 / 2$
3. Apply the seniority principle to find the names for: $\prec 1 / \omega|1 / 2 \succ, \prec 1 / \omega| \omega \succ, \prec-\omega \mid 1 / \omega \succ$, $\prec 1 / 3 \mid 1 / 2 \succ$, $\prec 1 /\left.7\right|^{1 / 5} \succ, \prec e|\pi \succ, \prec e| \succ, \prec \mid e \succ$
4. Check if $1 \geq 2,2 \geq 1,3 / 4 \geq 1,3 / 4 \geq 1 / 4,1 / 2 \geq-1 / 2,5 \geq \omega, \omega \geq 5,1 / \omega \geq 0, \omega-1 \geq \omega / 2$.
5. Check if $1>2,2>1,3 / 4>1,3 / 4>1 / 4,1 / 2>-1 / 2,5>\omega, \omega>5,1 / \omega>0, \omega-1>\omega / 2$. Do not use the results of the previous exercise.
6. Using induction, prove that $n \geq 0$ and $1 / 2^{n} \geq 0$, for every natural n.
7. For every $x \in \mathbb{S}$, prove that $x \geq x$. You will need the seniority principle.
8. Suppose that a, b, c are surreals with $a<b<c$. Prove that $\prec a, b|c \succ=\prec b| c \succ$. HINT:Prove $\prec a, b|c \succ \leq \prec b| c \succ$ and $\prec b|c \succ \leq \prec a, b| c \succ$.
9. For k finite, put all surreals with birthday $<k$ on a number line. Exactly one surreal with birthday k will fit into each gap, and one more on either side. Using this fact, determine with proof how many surreals have birthday k.
