MATH601 Spring 2008
 Handout 12: Exponentiation and Cantor Normal Form
 Unit 5: Ordinals

Recall that addition and multiplication of ordinals were defined recursively. We now define exponentiation recursively, as repeated multiplication. Let x, y be ordinals.

1. If $y=0$, then $x^{y}=1$. (in particular, $0^{0}=1$)
2. If y is a successor, then for some ordinal z, we have $y=z+1$. We define $x^{y}=\left(x^{z}\right) \times x$.
3. If y is a limit ordinal, then $y=\lim _{z<y} z$. We then define $x^{y}=\lim _{z<y}\left(x^{z}\right)$.

Exercises:

1. Calculate $2^{3}, 1^{\omega}, 2^{\omega}, 2^{\omega+1}$. Exponentiation of natural numbers coincides with your intuition (except for $0^{0}=1$).
2. Prove that $0^{x}=0$ and $1^{x}=1$ for all nonzero ordinals x.
3. Prove that $x^{y} \times x^{z}=x^{y+z}$ for all ordinals x, y, z.
4. Show that $(\omega \times 2)^{2}=\omega^{2} \times 2 \neq \omega^{2} \times 2^{2}$. Hence the law of exponents $(x \times y)^{z}=x^{z} \times y^{z}$ does not always hold for ordinals.

All ordinal numbers can be written uniquely in Cantor Normal Form, which can be considered a base- ω arithmetic. The CNF representation of ordinal y is $\omega^{x_{1}} n_{1}+\omega^{x_{2}} n_{2}+\cdots+\omega^{x_{k}} n_{k}$, where $k \in \mathbb{N}_{0}(k=0$ corresponds to $y=0), n_{i} \in \mathbb{N}, x_{i}$ are ordinals satisfying $x_{1}>x_{2}>\cdots>x_{k} \geq 0$.

CNF can be used to simplify ordinal arithmetic. Given nonzero y as above, $y \times n=\omega^{x_{1}} n_{1} n+\omega^{x_{2}} n_{2}+\cdots+\omega^{x_{k}} n_{k}(n>0) \quad$ only the leading coefficient increases $y \times \omega=\omega^{x_{1}+1} \quad$ everything except the first term (without coefficient) is lost $y+\omega^{x_{i}} n=\omega^{x_{1}} n_{1}+\omega^{x_{2}} n_{2}+\cdots \omega^{x_{i}}\left(n_{i}+n\right) \quad$ all terms smaller than the added one are lost Recall also that ordinals satisfy distributivity on the left: $a \times(b+c)=(a \times b)+(a \times c)$.

More Exercises:
5. Calculate the CNF for $\left(\omega^{3}+\omega \times 4+7\right)+\left(\omega^{2} \times 3+\omega \times 2+5\right)$.
6. Calculate the CNF for $\left(\omega^{2} \times 3+\omega \times 2+5\right)+\left(\omega^{3}+\omega \times 4+7\right)$.
7. Calculate the CNF for $\left(\omega^{3}+\omega \times 4+7\right) \times\left(\omega^{2} \times 3+\omega \times 2+5\right)$.
8. Calculate the CNF for $\left(\omega^{2} \times 3+\omega \times 2+5\right) \times\left(\omega^{3}+\omega \times 4+7\right)$.

