MATH601 Spring 2008
 Handout 10: Addition

Unit 5: Ordinals

The ordinal numbers represent not the size of a set, but the position within the ordered sequence $0,1,2, \ldots$. They are well-ordered ${ }^{1}$ and every ordinal has a unique successor, obtained by adding 1 and denoted by 4 , which is larger than the original. The von Neumann definition of ordinals is as the set containing all smaller ordinals (and nothing else). The +1 operation is equivalent to 'the set containing all ordinals up to and including this one', i.e. $x+1=x \cup\{x\}$. The naturals \mathbb{N}_{0} are defined in a very precise way: 5 is defined as 'one more than' 4 , etc. Under this definition, x is an ordinal if every element of x is also a subset of x. For example, 3 has three elements: $0,1,2.0=\{ \}$, the empty set, which is a subset of every set (and hence of 3). $1=\{0\} \subseteq\{0,1,2\}=3$. Finally, $2=\{0,1\} \subseteq\{0,1,2\}=3$. For ordinals x, y, we define $x<y$ if and only if $x \in y$ if and only if $x \subseteq y$. Be careful, as it is easy to get confused in all this.
$0=\{ \}, 1=\{0\}=0+1,2=\{0,1\}=1+1,3=\{0,1,2\}=2+1, \omega=\{0,1,2, \ldots\}, \omega+1=\{0,1, \ldots, \omega\}$.

Every ordinal n is necessarily one of three following types. Statements about ordinals will typically handle the three cases separately.

1. $n=0$, the unique smallest ordinal, a special case. 0 is not a successor or a limit.
2. $n=m \nrightarrow$ for some other ordinal m. We say that n is a successor ordinal, and m is its predecessor.
3. n has no predecessor; for every $m<n$ we also have $m+1<n$. We say that n is a limit ordinal.

Every element of \mathbb{N} (note that $0 \notin \mathbb{N}$) is a successor; the smallest ordinal after all of \mathbb{N} is called ω, omega. We can now define addition of ordinals ${ }^{2}$, as follows. Let x, y be ordinals.

1. If $y=0$, then $x+y=x$.
2. If y is a successor, then for some ordinal z, we have $y=z \nrightarrow$. We define $x+y$ as the successor of $x+z$; i.e. $x+y=(x+z)+1$.
3. If y is a limit ordinal, then $y=\lim _{z<y} z$. We then define $x+y=\lim _{z<y}(x+z)$.

Note: H means successor, which is a set operation (it is not addition). However, these two coincide:
Lemma For any ordinal $x, x+1=x+1$.
Proof. $1=0+1$. Hence $x+1$ by property 2 equals $(x+0) \notin$, which by property 1 equals $x \neq 1$.

Exercises:

1. Prove that $3<5$ in three ways: $3 \subseteq 5,3 \in 5$, and we can get from 3 to 5 using the successor operation.
2. Prove that $3<\omega$ in two ways: $3 \subseteq \omega, 3 \in \omega$. Can we get from 3 to ω using the successor operation?
3. Express 3,4 in von Neumann notation using only symbols $\{$,$\} . e.g., 1=\{\{ \}\}, 2=\{\{ \},\{\{ \}\}\}$.
4. Prove that $\omega=\{0,1,2, \ldots\}$ is a limit ordinal.
5. Calculate $4+2$ and $2+4$. Note that although the answer is the same the method is quite different.
6. Show that $1+\omega=\omega \neq \omega+1$.
7. For any nonzero ordinals x, y, prove: (1) If y is a successor then $x+y$ is a successor; and (2) if y is a limit then $x+y$ is a limit. Hence if one of x, y is a successor and the other is a limit, $x+y \neq y+x$.
8. Calculate $(3+(\omega+4))+((\omega+5)+6)$.
[^0]
[^0]: ${ }^{1}$ This does not necessarily mean we assume the axiom of choice (there may be non-ordinal numbers that are not in this well-ordering), however we may as well assume AC since it makes things conceptually simpler.
 ${ }^{2}$ This addition is associative, but the proof is difficult and we omit it.

