MATH601 Spring 2008

Exam 6 Solutions

1. Calculate $1 / 2+3 / 4$, using the definition of + .

Recall that $1=\prec 0|\succ, 1 / 2=\prec 0| 1 \succ, 3 / 4=\prec 1 / 2|1 \succ, 3 / 2=\prec 1| 2 \succ$.
$1 / 2+3 / 4=\prec 0+3 / 4,1 / 2+1 / 2 \mid 1+3 / 4,1+1 / 2 \succ$
$1 / 2+1 / 2=\prec 0+1 / 2,0+1 / 2|1+1 / 2,1+1 / 2 \succ 1+1 / 2=\prec 0+1 / 2,0+1| 1+1 \succ$
$1+1=\prec 0+1,0+1|\succ=\prec 1| \succ=2$
Hence $1+1 / 2=\prec 1 / 2,1 \mid 2 \succ=3 / 2$, by the exercise where $\prec a, b|c \succ=\prec b| c \succ$ if $a<b$.
Hence $1 / 2+1 / 2=\prec 1 / 2 \mid 3 / 2 \succ=1$ by the Seniority Principle.
$1+3 / 4=\prec 0+3 / 4,1+1 / 2|1+1 \succ=\prec 3 / 4,3 / 2| 2 \succ=7 / 4$ by the Seniority Principle.
Finally, $1 / 2+3 / 4=\prec 3 / 4,\left.1\right|^{7} / 4,3 / 2 \succ=5 / 4$ by the Seniority Principle.
2. For all surreal numbers y, prove that $y \ngtr y$.

Method 1: $y \ngtr y$ if and only if $y \geq y$, which was previously proved (Exercise 7 from Handout 13, then again in Thm 1 from Handout 14).

Method 2: Proof by surreal induction. Suppose that $y>y$. Case (i): There is $a \in R(y)$ with $y \geq a$. Hence we have $a>y \geq a$, and by Thm 3 from Handout 14 (transitivity), we have $a>a$, which is impossible by surreal induction. Case (ii): There is $b \in L(y)$ with $b \geq y$. Hence we have $b \geq y>b$, and by Thm 3 from Handout $14, b>b$, which is again impossible by surreal induction.

Method 3: Suppose that $y>y$. Then, by definition of $>$, either (i) there is some $a \in R(y)$ with $y \geq a$; or (ii) there is some $b \in L(y)$ with $b \geq y$. But both of these violate the Seniority Principle: $y^{L}<y<y^{R}$. Hence $y \ngtr y$.
3. Exam grades: $100,98,97,90,89,80,76,76,72,53$

