1. For H any positive infinite hyperreal, compute $s t\left(\sqrt{H^{2}+H+1}-H\right)$, or show that it does not exist.

We focus on the argument: $\sqrt{H^{2}+H+1}-H=\left(\sqrt{H^{2}+H+1}-H\right) \frac{\sqrt{H^{2}+H+1}+H}{\sqrt{H^{2}+H+1}+H}=$ $\frac{\left(H^{2}+H+1\right)-H^{2}}{\sqrt{H^{2}+H+1}+H}=\frac{H+1}{\sqrt{H^{2}+H+1}+H} \frac{1 / H}{1 / H}=\frac{1+1 / H}{\sqrt{1+1 / H+1 / H^{2}+1}}$.

We now take standard parts, and use Theorem 3 from Section 1.6 repeatedly to get: $s t\left(\sqrt{H^{2}+H+1}-H\right)=s t\left(\frac{1+1 / H}{\sqrt{1+1 / H+1 / H^{2}}+1}\right)=\frac{s t(1)+s t(1 / H)}{\sqrt{s t(1)+s t\left(1 / H+1 / H^{2}\right)}+s t(1)}=\frac{1+0}{\sqrt{1+0+1}}=1 / 2$
(Note: By the "rules for infinitesimals", since H is infinite, so is H^{2}; hence $1 / H, 1 / H^{2}$, and $1 / H+1 / H^{2}$ are infinitesimal. The standard part of any infinitesimal is 0 .)
2. Prove the product rule: Given real functions $f(x), g(x)$, set $h(x)=f(x) g(x)$. Suppose that $f^{\prime}(x), g^{\prime}(x)$ both exist. Then $h^{\prime}(x)$ exists, and equals $f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$.

Let ε be any nonzero hyperreal. We recall that $f^{\prime}(x)=\operatorname{st}\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right), g^{\prime}(x)=$ st $\left(\frac{g(x+\varepsilon)-g(x)}{\varepsilon}\right)$; since these are both defined, each of $f(x), f(x+\varepsilon), g(x), g(x+\varepsilon)$ are defined. Hence $h(x), h(x+\varepsilon)$ are defined.

Using the definition of derivative, $h^{\prime}(x)=s t\left(\frac{h(x+\varepsilon)-h(x)}{\varepsilon}\right)=s t\left(\frac{f(x+\varepsilon) g(x+\varepsilon)-f(x) g(x)}{\varepsilon}\right)$. The argument is: $\frac{f(x+\varepsilon) g(x+\varepsilon)-f(x) g(x)}{\varepsilon}=\frac{f(x+\varepsilon) g(x+\varepsilon)-f(x+\varepsilon) g(x)+f(x+\varepsilon) g(x)-f(x) g(x)}{\varepsilon}=$ $f(x+\varepsilon) \frac{g(x+\varepsilon)-g(x)}{\varepsilon}+g(x) \frac{f(x+\varepsilon)-f(x)}{\varepsilon}$.

Taking standard parts and using Theorem 3, we find $h^{\prime}(x)=s t\left(\frac{f(x+\varepsilon) g(x+\varepsilon)-f(x) g(x)}{\varepsilon}\right)=$ $s t\left(f(x+\varepsilon) \frac{g(x+\varepsilon)-g(x)}{\varepsilon}+g(x) \frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)=s t(f(x+\varepsilon)) g^{\prime}(x)+s t(g(x)) f^{\prime}(x)=$ $f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$.

Note: $\operatorname{st}(f(x+\varepsilon))=f(x)$ by the increment theorem, and $\operatorname{st}(g(x))=g(x)$ since $g(x)$ is a real function. Finally, we note that this was independent of the choice of ε (so long as $\varepsilon \neq 0)$, so $h^{\prime}(x)$ is defined because $f^{\prime}(x), g^{\prime}(x)$ are.
3. Exam grades: 93, 89, 88, 85, 84, 84, 83, 79

