MATH 579 Exam 4 Part I

Assigned 3/4/10, Due by classtime 3/9/10

Please read the exam instructions.

Please write your answers on separate paper and put your name or initials on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this sheet for your records. Show all necessary work in your solutions; if you are unsure, show it. Simplify all numerical answers to be integers, if possible. You are welcome to use your book, notes, calculators, computers, etc. This problem is worth 10-20 points.

You may NOT discuss possible solutions to this exam with any human prior to submission. Violations of this policy will cause catastrophic course failure.

Part I: Recall the difference operator Δ, where $\Delta f(x)=f(x+1)-f(x)$. Define the shift operator E, as $E f(x)=f(x+1)$.

1. Consider functions $u(x), v(x)$. Prove the (difference calculus) product rule:

$$
\Delta(u v)=u \Delta v+(E v) \Delta u
$$

2. Use the product rule to prove the summation by parts formula:

$$
\sum u \Delta v \delta x=u v-\sum(E v) \Delta u \delta x .
$$

3. Use summation by parts to find a closed form for $\sum_{k=0}^{n} k 2^{k}$.

NOTE: It is not necessary to do these parts in order, you may assume 1 to do 2 ; you may assume 2 to do 3 .

