MATH 579 Exam 5 Solutions

1. Calculate the number of compositions of 14 into an even number of even parts.

Partitions of 14 into even parts are bijective with partitions of 7 into integer parts, by dividing each part by 2. We don’t want all such though, we insist on an even number of parts, namely 2 or 4 or 6. Applying Cor. 5.3 thrice, the answer is \(\binom{14}{3} + \binom{14}{4} + \binom{14}{6} = 6 + 20 + 6 = 32. \)

2. For all \(n \in \mathbb{N}, \) determine \(S(n, n - 2). \)

There are two types of set partitions of \([n] \) into \(n - 2 \) parts. First, there is the type that has one triple and \(n - 3 \) singletons. There are \(\binom{n}{3} \) such. Second, there is the type that has two doubles and \(n - 4 \) singletons. If the doubles were different, there would be \(\binom{n}{2}(\binom{n-2}{2}) \) such; however, they are not, so in fact there are \(\frac{1}{2!}\binom{n}{2}(\binom{n-2}{2}) \) such. Putting it together, we get \(\binom{n}{3} + \frac{1}{2!}\binom{n}{2}(\binom{n-2}{2}) \). Note that this works even for \(n = 1, 2, \) where everything is 0.

3. Calculate \(S(8, 3). \)

Using the helpful but not necessary formula \(S(n, 2) = 2^{n-1} - 1, \) together with Thm 5.8, we get \(S(3, 3) = 1, S(4, 3) = S(3, 2) + 3S(3, 3) = (2^2 - 1) + 3 = 6, S(5, 3) = S(4, 2) + 3S(4, 3) = (2^4 - 1) + 3(6) = 25, S(6, 3) = S(5, 2) + 3S(5, 3) = (2^4 - 1) + 3(25) = 90, S(7, 3) = S(6, 2) + 3S(6, 3) = (2^4 - 1) + 3(90) = 301, S(8, 3) = S(7, 2) + 3S(7, 3) = (2^6 - 1) + 3(301) = 966. \)

4. Let \(a_n \) denote the number of compositions of \(n \) where each part is larger than 1. Find a formula relating \(a_n, a_{n-1}, a_{n-2}. \)

We divide such compositions into two types: A: those that have first term equal to 2, B: those that have first term greater than 2. Type A are bijective with compositions counted by \(a_{n-2}, \) as seen by removing that first term. Type B are bijective with compositions counted by \(a_{n-1}, \) as seen by subtracting one from the first term. Hence \(a_n = a_{n-1} + a_{n-2}. \) Note that \(a_2 = 1, a_3 = 1, \) so in fact these are the Fibonacci numbers in disguise.

5. Let \(k \) range from 0 to \(n \), prove that \(\sum \binom{n}{k} S(k, l) S(n - k, m) = S(n, l + m) \binom{l+m}{l}. \)

We count partitions of \([n] \) into \(l \) nonempty “red” parts, and \(m \) nonempty “blue” parts. One way to do this is to first partition \([n] \) into \(l + m \) nonempty parts, and then paint \(l \) of them red (the rest are blue). The RHS counts this way. Another way is to first choose \(k \) elements that will be in a red part; we then partition them into nonempty parts in \(S(k, l) \) ways. The remaining \(n - k \) elements will be in a blue part; we partition them in \(S(n - k, m) \) ways. The LHS counts this approach.

6. Let \(p \) be prime, prove that \(B(p) \equiv 2 \pmod{p}. \) Equivalently, prove that \(p \) divides \(B(p) - 2. \)

Consider the function \(f \) on partitions of \([p] \) that acts by permuting the numbers within the parts as \(1 \to 2 \to 3 \to \cdots \to p \to 1. \) For example, for \(p = 3, f \) acts as \(\begin{cases} \{1, 2, \{3\} \to \{2, 3\} \{1\} \to \{1, 3\} \{2\} \to \{1, 2\} \{3\} \end{cases}. \) Call two partitions ‘equivalent’ if some number of applications of \(f \) will map one onto the other. \(f \) leaves exactly two partitions alone: \(\{1\} \{2, \ldots, p\} \) and \(\{1, 2, \ldots, p\}. \) All other partitions are equivalent to exactly \(p \) partitions [special case of Lagrange’s theorem]; hence \(B(p) \) is two plus some multiple of \(p. \)

Note 1: Since the cycle of partitions that \(f \) induces all have the same number of parts, this also proves that \(p \mid S(p, k), \) for \(p \) prime and \(1 < k < p. \)

Note 2: \(p \) must be prime for this to hold. For example, for \(p = 4, \) the cycle \(\begin{cases} \{1, 2\} \{3, 4\} \to \{2, 3\} \{1, 4\} \to \{1, 2\} \{3, 4\} \end{cases} \) only has two partitions, not \(p. \) And indeed \(B(4) = 15, \) which is not congruent to 2 modulo 4.

Note 3: This result is a special case of Touchard’s Congruence: \(B_n + B_{n+1} \equiv B_{n+p} \pmod{p}. \) This problem corresponds to \(n = 0; \) the general result can be proved in a similar way.

Exam results: High score=88, Median score=70, Low score=53 (before any extra credit)