MATH 579 Exam 4 Solutions

1. For all \(n \in \mathbb{N} \), prove that \(\sum_k \binom{n}{k} \binom{2n}{n-k} = \binom{3n}{n} \).

First solution: Apply Thm. 4.7 in the text, with \(m = 2n \), \(k = n \), \(i = k \).

Second solution: In a class with \(n \) women and \(2n \) men, we choose \(n \) students. There are \(\binom{3n}{n} \) ways to do this, or we could instead choose \(k \) women and \(n-k \) men, for every possible \(k \in [0, n] \). The sum counts exactly this, because for \(k \) outside this range the summand is zero.

This is a direct application of Thm 4.7. It is also very similar to Problem 33, and to Problem 3 from the exam two years ago.

2. A northeastern lattice path is a path consisting of \((1,0)\) and \((0,1)\) steps. How many such paths are there from \((0,0)\) to \((10,10)\) that do not pass through \((1,1)\)?

We count northeast lattice paths in a rectangle of size \(n \times k \). There must be \(k \) steps north, and \(n \) steps east. Hence the northeast lattice paths are bijective with rearrangements of the word \(NN \cdots NE \cdots E\), which is counted by the multinomial coefficient \(\binom{n+k}{n,k} = \binom{n+k}{k} \).

First solution: There are \(\binom{10+10}{10} \) \(\text{NE} \) lattice paths altogether. We count how many pass through \((1,1)\) and subtract. This is a product of the number of paths from \((0,0)\) to \((1,1)\) and the number of paths from \((1,1)\) to \((10,10)\). Hence the answer is \(\binom{20}{10} - \binom{2}{1} \binom{18}{9} = 184756 - 97240 = 87516 \).

Second solution: Desired paths must start \(EE \) or \(NN \). The former then has a northeast path from \((2,0)\) to \((10,10)\), of which there are \(\binom{8+10}{10} = 43758 \). The latter has a northeast path from \((0,2)\) to \((10,10)\), of which there are \(\binom{10+8}{8} = 43758 \). Altogether there are \(43758 + 43758 = 87516 \).

This is very similar to Problems 19, 23, 24, 31, 32, 50.

3. Which monomial term(s) of \((x+y+z)^{16}\) has the largest coefficient? What is that coefficient?

If \(x^a y^b z^c \) is in the expansion, it must have \(a+b+c = 16 \). Its coefficient is \(\frac{16!}{a!b!c!} \).

To maximize the coefficient we must minimize the denominator. Note that if \(a > b+1 \), then \((a-1)+(b+1)+c = a+b+c = 6 \), and \(\frac{(a-1)(b+1)c!}{a!b!c!} = \frac{b+1}{a} < 1 \), so \((a-1)(b+1)c! < a!b!c! \) and hence \(a!b!c! \) could not have been minimal. Hence, by symmetry, \(a, b, c \) must all be either equal or differ by 1. Hence two of them are 5 and one is 6. There are therefore three terms, each with coefficient \(\binom{16}{5,5,6} : 2018016x^5y^5z^6, 2018016x^5y^6z^5, 2018016x^6y^5z^5 \).

This is very similar to Problems 10,11,12,44,45.

4. For all \(n \in \mathbb{N} \), calculate \(\sum_{k \text{ odd}} \binom{n}{k} 3^k \).

By Newton’s binomial theorem, we have \((1+3)^n = \sum_k \binom{n}{k} 3^k \). Also, \((1-3)^n = \sum_{k \text{ odd}} \binom{n}{k} (-3)^k \).
\[
\sum_k \binom{n}{k} (-3)^k = \sum_k \binom{n}{k} 3^k (-1)^k. \quad \text{Hence } 4^n - (-2)^n = \sum_k \binom{n}{k} 3^k (1 - (-1)^k) = \sum_{k, \text{odd}} \binom{n}{k} 3^k 2. \quad \text{Hence } \sum_{k, \text{odd}} \binom{n}{k} 3^k = \frac{4^n - (-2)^n}{2} = 2^{n-1} (2^n - (-1)^n).
\]

This is a direct application of theorems proved in class. It is also very similar to Problems 39, 40.

5. For all \(k \in \mathbb{Z}\), prove that \(\binom{n-1}{k-1} \binom{n}{k+1} = \binom{n-1}{k-1} \binom{n}{k+1} \binom{n}{k-1}\).

First, if \(k \leq 0\), then both sides are zero since \(\binom{n-1}{k-1} = \binom{n}{k-1} = 0\). Otherwise, \(k \geq 1\), and we have \(LHS = \binom{n-1}{k-1} \binom{n}{k+1} \binom{n}{k-1}\) and \(RHS = \binom{n-1}{k-1} \binom{n}{k+1} \binom{n}{k-1}\). Note that both denominators are \((k-1)!k!(k+1)!\) so it suffices to prove that \(A = B\), for \(A = \binom{n-1}{k-1} \binom{n}{k+1} \binom{n}{k-1}\) and \(B = \binom{n-1}{k} \binom{n+1}{k+1} \binom{n}{k-1}\). These have gcd \(C = \binom{n-1}{k-1} \binom{n}{k+1} \binom{n}{k-1}\). We have \(A = C(n - (k + 1) + 2)(n - (k + 1) + 1) = C(n-k+1)(n-k), B = C(n-1-k+1)(n+1-(k+1)+1) = C(n-k)(n-k+1). \quad \text{Hence } A = B, \text{ which proves the theorem.}

This is solved directly from the definition of binomial coefficients; there are many problems that explore this idea.

6. For \(m, n \in \mathbb{N}\), prove that \(\frac{1}{m^n!} = \lim_{n \to \infty} \frac{m+n}{n} n^{-m}\).

We have \(\frac{1}{m^n!} = \lim_{n \to \infty} \frac{(m+n)!}{m^n n!} n^{-m} = \frac{1}{m^n} \lim_{n \to \infty} \frac{(m+n)!}{m^n n!} = \frac{1}{m^n} \lim_{n \to \infty} \frac{m! (m+n) \cdots (n+1)}{n!} = \frac{1}{m^n} \lim_{n \to \infty} \frac{(1+m/n) \cdots (1+1/n)}{n!} \). This looks bad until you realize that there are \(m\) terms in the product, and \(m\) is fixed as \(n \to \infty\). Hence this equals \(\frac{1}{m^n} \lim_{n \to \infty} (1 + \frac{m}{n})(1 + \frac{m}{n}) \cdots (1 + \frac{1}{n}) = \frac{1}{m^n} \times 1 \times \cdots \times 1 = \frac{1}{m^n} \). This theorem was discovered and proved by the great mathematician Leonard Euler, at the age of 22.

This is solved directly from the definition of binomial coefficients; there are many problems that explore this idea.

Exam results: High score = 84, Median score = 68, Low score = 52 (before any extra credit)