
MATH 579 Spring 2007 Supplement: Recurrences

A recurrence is a sequence of numbers, defined by some positional relationship. This posi-

tional relationship is called a recurrence relation. That is, the nth number is a function of
the previous numbers. Some examples of recurrence relations are an = 2an−1, bn = bn−2 + 2,
cn = cn−1 + cn−2 (Fibonacci numbers if c1 = c2 = 1), dn+1 = n(dn−1 + dn) (derangements
if d1 = 0, d2 = 1). To fully specify the sequence, ‘enough’ initial conditions are necessary.
For example, {an} requires one initial condition (e.g. a1 = 3). {bn} requires two; b1 = 3 is
enough to specify all the odd terms in the sequence, but to specify the even terms we need
b2 = 4.

To solve a recurrence means to find a closed-form expression for the sequence, that does not
depend on previous terms. We have already learned two ways to solve recurrences. The
first is guessing; a recurrence is completely specified by its initial conditions and recurrence.
If you guess the answer, you can show that your guess satisfies the recurrence and satisfies
the initial conditions – this is enough to prove your answer. The second is by generating
functions.

Example 1a: a1 = 1, an = 2an−1 (n ≥ 2)

Guess an = 2n−1. Check that 21−1 = 1, so the initial condition is satisfied. Also, 2n−1 =
2× 2(n−1)−1, so the recurrence relation is satisfied.

Example 1b: a1 = 1, an = 2an−1 (n ≥ 2)

Set A(x) =
∑

n≥1 anx
n. 2xA(x) =

∑
n≥1 2anx

n+1 =
∑

n≥2 2an−1x
n =

∑
n≥2 anx

n = A(x) − x.
We simplify to get A(x) = x(1−2x)−1 = x

∑
n≥0 2nxn =

∑
n≥0 2nxn+1 =

∑
n≥1 2n−1xn. Hence

an = 2n−1.

Much as with differential equations, recurrences fall into many types, with many differ-
ent strategies for solution. A linear recurrence relation of order k may be written as
an = ?an−1 +?an−2 + · · ·+?an−k +?, where each ? is some function of n. If each ? is, in fact,
a constant, we say that the recurrence has constant coefficients. In this section, we will only
consider linear recurrences. Further, we will assume that all the coefficients (except possibly
the final ?) are constants. If the final ? is identically zero (i.e. an = ?an−1+?an−2+· · ·+?an−k)
we call the relation homogeneous ; otherwise we call it nonhomogeneous. In the above ex-
amples, an = 2an−1 is first-order homogeneous with constant coefficients, bn = bn−2 + 2 is
second-order nonhomogeneous with constant coefficients, cn = cn−1 + cn−2 is second-order
homogeneous with constant coefficients, and dn+1 = n(dn−1 + dn) is second-order homoge-
neous with nonconstant coefficients.
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Homogeneous Linear Recurrence Relations with Constant Coefficients

We consider the recurrence relation an = cn−1an−1 + cn−2an−2 + · · ·+ cn−kan−k. Because this
is homogeneous, we may multiply a solution by any constant and it will be a solution. We
may also add two solutions and get a solution. In short, the set of solutions forms a linear
space. This space is of dimension k, because the relation is of order k and requires k initial
conditions to fully specify the recurrence. Hence, to find the general solution, we may find
k linearly independent solutions, and take all their linear combinations. Caution: be sure
that the k specific solutions are linearly independent.

Let’s guess that an = xn is a solution. We substitute into the recurrence to get xn =
cn−1x

n−1 + cn−2x
n−2 + · · ·+ cn−kx

n−k. Dividing by xn−k gives us xk = cn−1x
k−1 + cn−2x

k−2 +
· · · + cn−k. This is known as the characteristic equation of the recurrence relation. It is
a polynomial of degree k, and therefore by the Fundamental Theorem of Algebra has k
complex roots, counted by multiplicity.

If the k roots r1, r2, . . . , rk are all distinct, then an = rn
1 , an = rn

2 , . . . , an = rn
k are k lin-

early independent solutions, and therefore span the solution space. The general solution is
therefore an = α1r

n
1 + α2r

n
2 + · · ·+ αkr

n
k . The k initial conditions allow us to determine the

unknown α1, α2, . . . , αk for a particular solution.

If, on the other hand, a root is repeated (i.e. r1 = r2), then an = rn
1 , an = rn

2 , . . . , an = rn
k

are NOT k linearly independent solutions. α1r
n
1 +α2r

n
2 is a one-dimensional subspace, being

equal to α1r
n
1 alone, because r1 = r2. Fortunately, if a root is repeated, we have available

to us additional solutions, that are linearly independent. If root r1 has multiplicity 4, then
rn
1 , nrn

1 , n2rn
1 , n3rn

1 are four linearly independent solutions (this fact will not be proved). In
this manner we again get k linearly independent solutions, and therefore the general solution
via linear combinations.

Example 1c: a1 = 1, an = 2an−1 (n ≥ 2)

This has characteristic equation x = 2; hence the general solution is an = α2n. Substituting
n = 1 and using the initial conditions, we have 1 = a1 = α21. We solve to find α = 1/2;
hence the specific solution is an = (1/2)2n = 2n−1.

Example 2: a1 = a2 = 1, an = an−1 + an−2 (n ≥ 3) (Fibonacci numbers)

This has characteristic equation x2 = x + 1, which has roots (using the quadratic formula)
r1 = (1 +

√
5)/2 and r2 = (1−

√
5)/2. Hence the general solution is an = α1r

n
1 + α2r

n
2 . We

have two initial conditions: 1 = a1 = α1r1 +α2r2, 1 = a2 = α1r
2
1 +α2r

2
2. This is a 2×2 linear

system in the unknowns α1, α2, with solution α1 = 1√
5
, α2 = −1√

5
. Hence the specific solution

is an = (rn
1 − rn

2 )/
√

5.
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Example 3: a0 = a2 = 1, a1 = 0, a3 = 2, an = −an−1 + 3an−2 + 5an−3 + 2an−4 (n ≥ 4)

This has characteristic equation x4 + x3 − 3x2 − 5x− 2 = 0. We find the roots by guessing
small integers (the rational root theorem helps too); if we successfully guess a root r, we di-
vide by x−r using long division and continue. In this manner, we find roots −1 (multiplicity
3), and 2. Hence, the general solution is an = α1(−1)n + α2n(−1)n + α3n

2(−1)n + α42
n. We

now apply our initial conditions to get:
(n = 0) : 1 = a0 = α1 + α4 (n = 1) : 0 = a1 = α1(−1) + α2(−1) + α3(−1) + α42
(n = 2) : 1 = a2 = α1 + α22 + α34 + α44 (n = 3) : 2 = a3 = α1(−1) + α2(−3) + α3(−9) + α48

This is a 4 × 4 linear system, with solution α1 = 7/9, α2 = −3/9, α3 = 0, α4 = 2/9. There-
fore, the specific solution is an = (7/9)(−1)n − (3n/9)(−1)n + (2/9)2n.

Example 4 (Gambler’s ruin): A gambler repeatedly plays a game against a casino, until
one of them runs out of money. Each time the gambler has probability p of winning $1,
and probability q = 1 − p of losing $1. The gambler starts with n dollars, and the casino
with m − n dollars (there are m total dollars to be won). What is the probability that the
gambler will run out of money before the casino?

Let an denote the desired probability, that the gambler is successful starting with n dollars.
For the gambler to win, either (1) gambler wins first bet, and then is successful starting with
n+1 dollars, or (2) gambler loses first bet, and then is successful starting with n−1 dollars.
Therefore, this sequence satisfies the recurrence relation an = pan+1 + qan−1(0 < n < m),
with boundary conditions a0 = 1, am = 0. This has characteristic equation px2 − x + q = 0,
with roots r1 = 1, r2 = q/p. Hence the problem breaks into two cases, depending on whether
p = q or not.

(p 6= q): The general solution is an = α1n+βrn
2 = α+βrn

2 . We apply the boundary conditions,
to get (n = 0) : 1 = a0 = α + β, (n = m) : 0 = am = α + βrm

2 . This has solution α =

−rm
2 /(1−rm

2 ), β = 1/(1−rm
2 ). Hence, the specific solution is (−rm

2 +rn
2 )/(1−rm

2 ) = 1− 1−rn
2

1−rm
2

.

(p = q = 1/2): The general solution is an = α1n + βn1n = α + βn. We apply the boundary
conditions, to get (n = 0) : 1 = a0 = α, (n = m) : 0 = am = α + βm. This has solution
α = 1, β = −1/m. Hence, the specific solution is 1− (n/m).
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Nonhomogeneous Linear Recurrence Relations

We want to solve the nonhomogeneous recurrence relation an = cn−1an−1 + cn−2an−2 + · · ·+
cn−kan−k + b(n), where b(n) is a function of n. The technique to find the general solution
is in two parts. First, drop the b(n) term and find the general solution to the homogeneous
recurrence relation. Then, find any single solution to the nonhomogeneous recurrence (under
any initial/boundary conditions). The general solution to the nonhomogeneous recurrence is
the sum of these two – a k-dimensional term from the homogeneous part, and a single term
with no constants from the nonhomogeneous part.

Finding a particular solution is, at times, an art form. The only good way to find them is to
guess and check – guess a particular solution, and see if it fits the nonhomogeneous relation.
If b(n) is a polynomial, it’s a good idea to try guessing a polynomial of the same degree;
however, if the homogeneous solution has overlap with this, then increase the degree of your
guess. If b(n) is an exponential, it’s a good idea to try a multiple of the same exponential.

Example 5: a0 = 2, an = 2an−1 + 3n (n ≥ 1)

Homogeneous version: an = 2an−1, which has characteristic equation x = 2 and general
solution α2n.
Nonhomogeneous version: Let’s guess β3n. Plugging into the relation, we get β3n =
2β3n−1 + 3n. We divide both sides by 3n−1 to get 3β = 2β + 3; hence β = 3. Thus
3n+1 is a specific solution to the original, nonhomogeneous, recurrence.
Putting them together, we find the general solution to the nonhomogeneous recurrence is
an = α2n + 3n+1. We now consider the initial condition, (n = 0) : 2 = a0 = α20 + 31. This
has solution α = −1, and so the specific solution is an = 3n+1 − 2n.

Example 6: a0 = a1 = 1, an = 2an−1 − an−2 + 5n (n ≥ 2)

Homogeneous version: an = 2an−1−an−2, which has characteristic equation x2−2x+1 = 0.
This has a double root of 1, hence has general solution α11

n + α2n1n = α1 + α2n.
Nonhomogeneous version: Let’s guess β5n. Plugging into the relation, we get β5n =
2β5n−1 − β5n−2 + 5n. We divide both sides by 5n−2 to get 25β = 10β − β + 25. This
has solution β = 25/16, so a nonhomogeneous solution is (25/16)5n = 5n+2/16.
Putting them together, we find the general solution to the nonhomogeneous recurrence is
an = α1 + α2n + 5n+2/16. Considering the initial conditions, (n = 0) : 1 = a0 = α1 +
25/16, (n = 1) : 1 = a1 = α1 +α2 +125/16. This has solution α1 = −9/16, α2 = −132/16,
and so the specific solution is an = (−9− 132n + 5n+2)/16.

Examle 7: a0 = 2, an = 3an−1 − 4n (n ≥ 1)

Homogeneous version: an = 3an−1, which has characteristic equation x = 3 and general
solution α3n.
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Nonhomogeneous version: We guess a solution of β1n + β0. Plugging into the nonho-
mogeneous equation, we get (β1n + β0) = 3(β1(n − 1) + β0) − 4n. Simplifying, we get
0 = (2β1− 4)n + (−3β1 + 2β0). If a polynomial equals zero, then each coefficient must equal
zero; hence 0 = 2β1 − 4 and 0 = −3β1 + 2β0. We solve this system to get β1 = 2, β0 = 3.
Hence 2n + 3 is a solution to the nonhomogeneous recurrence.
Putting them together, we find the general solution to the nonhomogeneous recurrence is
an = α3n + 2n + 3. With our initial condition, we have (n = 0) : 2 = a0 = α30 + 3, so
α = −1. So the specific solution is an = −3n + 2n + 3.

Example 8 (Tower of Hanoi): We have three pegs and n disks of different sizes. The
disks all start on one peg arranged in order of size, and we must move them to another. We
move one disk at a time, and may never put a larger disk onto a smaller. How many moves
does it take?

Let an represent the answer. We see that a1 = 1. To move the biggest disk from peg 1 to
peg 2, all the smaller disks must be in a single stack, on peg 3. Therefore, the solution must
contain three steps: First, move the n− 1 smaller disks from peg 1 to peg 3, then move the
largest disk form peg 1 to peg 2, then move the n − 1 smaller disks back onto the largest
disk from peg 3 to peg 2. Hence, an = an−1 + 1 + an−1 = 2an−1 + 1.

The homogeneous recurrence is again an = 2an−1 with general solution α2n. To find a specific
solution to the nonhomogeneous recurrence, consider a constant (0-th degree) polynomial in
n, say β. Plugging into the nonhomogeneous equation, we get β = 2β+1; we solve this to get
β = −1. Hence the general solution to the nonhomogeneous relation is an = α2n − 1. Our
initial conditions tell us 1 = a1 = α21−1; hence α = 1 and our specific solution is an = 2n−1.

Example 9 (Gambler’s ruin revisited): Consider the gambler of example 4. What is
the expected number of games played until either the gambler or casino is ruined?

Let an denote the desired answer (when the gambler starts with $n). If the gambler wins,
then the expected number of games is one more than the expected number of games, had
the gambler started with $(n + 1). If the gambler loses, then the expected number of games
is one more than the expected number of games, had the gambler started with $(n − 1).
Hence we get the relation an = p(an+1 + 1) + q(an−1 + 1) (0 < n < m). We have boundary
conditions 0 = a0 = am, and may rewrite the relation as pan+1 = an − qan−1 − 1. The
homogeneous recurrence has the familiar characteristic equation px2−x + q = 0; once again
the problem splits into cases based on whether q = p.

(p 6= q): The homogeneous general solution is α + βrn
2 (recall that r2 = q/p). If we try to

guess a 0-th degree polynomial solution to the nonhomogeneous recurrence, we will find no
luck (try it and see). The reason is that all 0-th degree polynomials are already solutions
of the homogeneous recurrence, and so none of them could ever solve the nonhomogeneous
recurrence.
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Instead let’s try a first-degree polynomial c1n + c0. We plug into the nonhomogeneous
equation to get p(c1(n + 1) + c0) = c1n + c0 − q(c1(n − 1) + c0) − 1. We collect terms to
get n(pc1 − c1 + qc1) + (pc1 + pc0 − c0 − qc1 + qc0 + 1) = 0. The first coefficient is zero
already, and the second coefficient simplifies to (p − q)c1 + 1 = 0; hence c1 = −1/(p − q),
and we may as well take c0 = 0 although the choice is arbitrary (in fact, we could have
known this since all constants are part of the homogeneous solution). Therefore, the general
nonhomogeneous solution is an = α + βrn

2 − n/(p− q). For the particular solution, we take
0 = a0 = α + β, 0 = am = α + βrm

2 −m/(p− q). This has solution β = m
(1−2p)(1−rm

2 )
, α = −β.

We plug these into the general solution, to find an =
(
n−m

1−rn
2

1−rm
2

)
/(1− 2p).

(p = q = 1/2): The homogeneous general solution is α + βn. We won’t get very far trying
low-degree polynomials, since they are all part of the homogeneous solution. So, let’s try
cn2. We plug into the nonhomogeneous equation to get pc(n + 1)2 = cn2 − qc(n − 1)2 − 1.
We rewrite to get n2(pc − c + qc) + n(2pc − 2qc) + (pc + qc + 1) = 0. Since p = q = 1/2,
the first two coefficients are zero already, and the last is zero when c = −1. Hence the
general nonhomogeneous solution is an = α + βn − n2. For the specific solution, we take
0 = a0 = α, 0 = am = α + βm − m2. This has solution α = 0, β = m. Hence, the specific
solution is an = mn− n2 = n(m− n).

Exercises

Solve the following recurrence relations.

1. a0 = a1 = 2, an = −2an−1 − an−2 (n ≥ 2)

2. a0 = 0, a1 = 1, an = 4an−2 (n ≥ 2)

3. a0 = 2, a1 = −4, a2 = 26, an = an−1 + 8an−2 − 12an−3 (n ≥ 3)

4. a0 = a1 = a2 = 0, an = 9an−1 − 27an−2 + 27an−3 (n ≥ 3)

5. a0 = a1 = 0, an = an−1 + 2an−2 + 3 (n ≥ 2)

6. a0 = a1 = 0, an = an−1 + 2an−2 + n (n ≥ 2)

7. a0 = a1 = 0, an = an−1 + 2an−2 + en (n ≥ 2)

8. Let an be the number of n-digit nonnegative integers in which no three consecutive
digits are the same. Justify that an+2 = 9an+1 + 9an, then find an.

9. Let an be the number of ways to color the squares of a 1 × n chessboard using the
colors red, white, and blue, so that no two red squares are adjacent.

10. Let an be the number of ways to color the squares of a 1 × n chessboard using the
colors red, white, and blue, so that no red square is adjacent to a white square.

11. Let an be the number of ways to color the squares of a 1×n chessboard using the colors
red, white, and blue, so that the specific sequence red-white-blue does not occur.

12. Let an be the number of ways to climb a flight of n stairs, when each of your steps
may move you one, two, or three steps higher.
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