Math 579 Final Exam: 5/10/7
Please read the exam instructions.
Books and notes are forbidden for this exam. Please write your answers on separate paper and put your name on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this page for your records. Show all necessary work in your solution; if you are unsure, show it. Each problem is worth 10-20 points. You have 60 minutes.

1. Fix positive integer m. Let A be an alphabet consisting of m different symbols. We add the special symbol X; set $A^{+}=A \cup\{X\}$ and $\left|A^{+}\right|=$ $m+1$. We consider words with letters drawn from A^{+}. We call a word legitimate if it contains an even number (possibly 0) of X symbols. Let b_{n} represent the number of legitimate n-letter words with letters drawn from A^{+}. We have $b_{1}=m, b_{2}=m^{2}+1$. Find a linear nonhomogeneous constant-coefficient recurrence relation on b_{n}, and use it to find a closed form for b_{n}.
2. The ordinary way to label an eight-sided die is $1,2,3,4,5,6,7,8$. If we roll two ordinary eight-sided dice, and add the results, the totals are represented in the following table, together with their probabilities. Determine all other methods (if any) of labelling two eight-sided dice with positive integers, to have the same possible totals, with the same probabilities. HINT: The following polynomials are irreducible over the integers: $x+1, x^{2}+1, x^{4}+1, x^{8}+1$.

2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\frac{1}{64}$	$\frac{2}{64}$	$\frac{3}{64}$	$\frac{4}{64}$	$\frac{5}{64}$	$\frac{6}{64}$	$\frac{7}{64}$	$\frac{8}{64}$	$\frac{7}{64}$	$\frac{6}{64}$	$\frac{5}{64}$	$\frac{4}{64}$	$\frac{3}{64}$	$\frac{2}{64}$
64													

