Math 579 Exam 9 Solutions

1. Solve the following recurrence. $a_{n}=6 a_{n-1}-9 a_{n-2}, a_{0}=0, a_{1}=1$.

This homogeneous recurrence has characteristic equation $x^{2}-6 x+9=0$, which has a double root of $x=3$. Hence, the general solution is $a_{n}=\alpha 3^{n}+\beta n 3^{n}$. The initial conditions give us $0=a_{0}=\alpha+0,1=a_{1}=\alpha 3+\beta 3$, which has solution $\alpha=0, \beta=1 / 3$. Hence, the solution is $a_{n}=n 3^{n-1}$.
2. Solve the following recurrence. $a_{n}=3 a_{n-1}+2 n+1, a_{0}=0$.

The homogeneous version has general solution $a_{n}=\alpha 3^{n}$. For the nonhomogeneous version, try $a_{n}=A n+B$. We have $A n+B=3(A(n-1)+B)+2 n+1$. We rearrange to $n(3 A+2-A)+(-3 A+3 B+1-B)=0$; hence $3 A+2-A=0,-3 A+3 B+1-B=0$. This has solution $A=-1, B=-2$. Hence the general nonhomogeneous solution is $a_{n}=\alpha 3^{n}-n-2$. We apply the initial condition to get $0=a_{0}=\alpha 3^{0}-0-2$. Hence $\alpha=2$ and the solution is $a_{n}=2\left(3^{n}\right)-n-2$.
3. A gambler repeatedly plays a game against a casino, until one of them runs out of money. Each time, the gambler has probability s of nothing happening, probability p of winning $\$ 1$, and probability q of losing $\$ 1$, with $s+p+q=1$. The gambler starts with n dollars, and the casino with $m-n$ dollars. What is the probability that the gambler will run out of money before the casino?
This is similar to Example 4 in the handout. The conditions give us the recurrence relation $a_{n}=s a_{n}+p a_{n+1}+q a_{n-1}$, with characteristic equation $p x^{2}+(s-1) x+q=0$. However, this has (surprisingly) the same roots as before, namely 1 and q / p. Therefore, the rest of Example 4 applies verbatim, giving solutions $1-\frac{1-(q / p)^{n}}{1-(q / p)^{m}}$ for $p \neq q$ and $1-(n / m)$ for $p=q$.
4. Solve the following recurrence. $a_{n}=a_{n-1}+a_{n-2}-a_{n-3}+2, a_{0}=4, a_{1}=0, a_{2}=5$.

The characteristic equation of the homogeneous recurrence is $x^{3}-x^{2}-x+1=0$, which factors as $(x-1)^{2}(x+1)=0$. Hence the general homogeneous solution is $a_{n}=\alpha+\beta n+\gamma(-1)^{n}$. For the particular nonhomogeneous solution, we note that polynomials of degree 0 and 1 are already represented in the homogeneous solution set. Hence we try $a_{n}=A n^{2}$. $A n^{2}=A(n-1)^{2}+A(n-2)^{2}-A(n-3)^{2}+2=$ $A\left(n^{2}-2 n+1\right)+A\left(n^{2}-4 n+4\right)-A\left(n^{2}-6 n+9\right)+2=A n^{2}-4 A+2$. Hence $A=1 / 2$, and the general nonhomogeneous solution is $a_{n}=\alpha+\beta n+\gamma(-1)^{n}+n^{2} / 2$. We apply our initial conditions to get $4=a_{0}=\alpha+\gamma, 0=a_{1}=\alpha+\beta-\gamma+\frac{1}{2}, 5=a_{2}=\alpha+2 \beta+\gamma+2$. This has solution $\alpha=\gamma=2, \beta=-1 / 2$, and thus the solution is $a_{n}=2+2(-1)^{n}+\left(n^{2}-n\right) / 2$.
5. Let a_{n} represent the maximum number of regions we can divide the plane into with n lines. Find and solve a recurrence for a_{n}.
We note that $a_{1}=2, a_{2}=4$. Consider adding the $n^{\text {th }}$ line. It can cross at most $n-1$ lines (each of the previous lines once). Hence, it can cross at most n regions (since
to go from one region to another it must cross a line). Since it crosses at most n regions, it can create at most n new regions. Conversely, we can ensure that it DOES create n new regions, by making it not parallel to any of the other lines and not pass through any intersection point. Hence $a_{n}=a_{n-1}+n$. This has homogeneous solution $a_{n}=\alpha(1)^{n}=\alpha$. For the nonhomogeneous version, we guess $a_{n}=A n^{2}+B n$. We have $A n^{2}+B n=A(n-1)^{2}+B(n-1)+n$. We solve to find $A=B=1 / 2$. Hence $a_{n}=\alpha+\left(n+n^{2}\right) / 2$ is the general nonhomogeneous solution. Our initial condition gives us $2=a_{1}=\alpha+\left(1+1^{2}\right) / 2$, so $\alpha=1$ and the solution is $a_{n}=\left(n^{2}+n+2\right) / 2$.
Part II. Let $a_{0}=A, a_{1}=B, a_{n}=\frac{1+a_{n-1}}{a_{n-2}}$ for $n>1$. Assume that $a_{n} \neq 0$ for all n, so we never divide by zero. Calculate and simplify $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$. Look for a pattern, and use it to find a_{n}.
$a_{2}=\frac{1+B}{A}, a_{3}=\frac{A+B+1}{A B}, a_{4}=\frac{A+1}{B}, a_{5}=A, a_{6}=B$, and then it all begins again (this sequence is periodic).
Hence $a_{n}= \begin{cases}A & n=5 k, k \in \mathbb{N} \\ B & n=5 k+1, k \in \mathbb{N} \\ (1+B) / A & n=5 k+2, k \in \mathbb{N} \\ (1+A+B) / A B & n=5 k+3, k \in \mathbb{N} \\ (1+A) / B & n=5 k+4, k \in \mathbb{N}\end{cases}$
Exam statistics: Low grade=32(D); Median grade $=41$ (B); High grade $=49$ (A)

