Math 579 Exam 4 Solutions

1. How many subsets of $[n]$ are larger than their complements?

We pair off the subsets of $[n]$ by pairing each subset with its complement. If n is odd, then one of these will always be larger than the other, so exactly half of the subsets $\left(2^{n} / 2=2^{n-1}\right)$ are larger than their complements. If n is even, this same strategy works, EXCEPT for those subsets of size $n / 2$. There are $\binom{n}{n / 2}$ of them, which are divided into half as many pairs. Each of these pairs needs to be subtracted off; hence the answer for even n is $2^{n-1}-\frac{1}{2}\binom{n}{n / 2}$. The book has a typo in its solution.
2. Evaluate the sum $\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k}$.

Solution 1: We use the identity $\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}$, which is valid for $k \neq 0$. In our case, this condition holds, so we may rewrite the sum to be $\sum_{k=0}^{n} \frac{1}{n+1}\binom{n+1}{k+1}=\frac{1}{n+1} \sum_{k=0}^{n}\binom{n+1}{k+1}=$ $\frac{1}{n+1} \sum_{j=1}^{n+1}\binom{n+1}{j}=\frac{1}{n+1}\left(-1+\sum_{j=0}^{n+1}\binom{n+1}{j}\right)=\frac{1}{n+1}\left(-1+2^{n+1}\right)$
Solution 2: We begin with $(1+x)^{n}=\sum_{k}\binom{n}{k} x^{k}$. We integrate both sides, from 0 to y, to get $\left.\frac{1}{n+1}(1+x)^{n+1}\right|_{0} ^{y}=\left.\sum_{k} \frac{1}{k+1}\binom{n}{k} x^{k+1}\right|_{0} ^{y}$. We simplify to get $\frac{1}{n+1}\left((1+y)^{n+1}-1\right)=$ $\sum_{k} \frac{1}{k+1}\binom{n}{k} y^{k+1}$. Plug in $y=1$, and we find $\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k}=\frac{1}{n+1}\left(2^{n+1}-1\right)$.
3. Let $n \in \mathbb{N}$. Prove that $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$.

Solution 1: Because $n \in \mathbb{N}$, we may rewrite $\sum_{k=0}^{n}\binom{n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$, and give a combinatorial proof. Consider $2 n$ students, half male and half female. Let S be the number of ways to select n of these students. $|S|=\binom{2 n}{n}$, by ignoring gender. But we may also select n students by first deciding to choose k male students and hence $n-k$ female students. There are $\binom{n}{k}\binom{n}{n-k}$ to choose these students. We could do this for any k with $0 \leq k \leq n$, hence $|S|=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$.
Solution 2: This uses Thm 4.7 in the text, which states that: $\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}$. This requires n, m, k to all be positive integers. We fix $n \in \mathbb{N}$, and set $k=n, m=n$. The theorem then simplifies to $\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}$. This solves the problem, since again $\binom{n}{n-i}=\binom{n}{i}$.
4. We may write $x^{4}=(x)_{4}+6(x)_{3}+a(x)_{2}+(x)_{1}$, for some integer constant a. First, find a. Then, use the difference calculus to evaluate in closed form $\sum_{k=0}^{n} k^{4}$.
A cute way to find a is to plug in a value of x. For example, $x=2$ gives $2^{4}=$ $(2)_{4}+6(2)_{3}+a(2)_{2}+(2)_{1}=0+0+a \cdot 2+2$; hence $a=7$. Alternatively, we can just expand: $(x)_{4}+6(x)_{3}+a(x)_{2}+(x)_{1}=x(x-1)(x-2)(x-3)+6 x(x-1)(x-2)+a x(x-1)+x=$ $x^{4}+(a-7) x^{2}+(7-a) x$. Hence $a=7$.
Now, $\sum_{0 \leq k<n+1} k^{4}=\sum_{0 \leq k<n+1}(k)_{4}+6(k)_{3}+7(k)_{2}+(k)_{1}$. We apply the fundamental theorem of difference calculus to get $\frac{1}{5}(k)_{5}+\frac{6}{4}(k)_{4}+\frac{7}{3}(k)_{3}+\left.\frac{1}{2}(k)_{2}\right|_{k=0} ^{k=n+1}=\frac{1}{5}(n+1)_{5}+$ $\frac{6}{4}(n+1)_{4}+\frac{7}{3}(n+1)_{3}+\frac{1}{2}(n+1)_{2}-\left(\frac{1}{5}(0)_{5}+\frac{6}{4}(0)_{4}+\frac{7}{3}(0)_{3}+\frac{1}{2}(0)_{2}\right)$. If you want to simplify this, it's $\frac{6 n^{5}+15 n^{4}+10 n^{3}-n}{30}$.
5. Let p be prime. Prove that p divides $\binom{p-1}{k}+(-1)^{k+1}$, for all k satisfying $0 \leq k \leq p-1$. HINT: Start by proving that p divides $\binom{p}{k}$ for all k with $1 \leq k \leq p-1$.
$\binom{p}{k}=\frac{p!}{k!(p-k)!}$, since $p>k>0$. The denominator is the product of many factors, all strictly less than p; hence p does not divide the denominator. Since prime p divides the numerator, p must divide $\binom{p}{k}$. Now, $\binom{p}{k}=\binom{p-1}{k}+\binom{p-1}{k-1}$. Hence, consecutive terms in the $(p-1)^{\text {th }}$ row of Pascal's triangle sum to a multiple of p. We finish the proof by induction on k. For $k=0,\binom{p-1}{0}=1$ so p divides $\binom{p-1}{0}-1$. For $k>0, p$ divides $\binom{p}{k}=\binom{p-1}{k-1}+(-1)^{k}-(-1)^{k}+\binom{p-1}{k}$, and p also divides $\binom{p-1}{k-1}+(-1)^{k}$ by the inductive hypothesis. Hence p must also divide $-(-1)^{k}+\binom{p-1}{k}=\binom{p-1}{k}+(-1)^{k+1}$.
Part II. Guess a closed form for $f(n)=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n-1) \cdot n}$, for all integer $n \geq 2$. Then, prove your formula.
We first calculate $f(2)=\frac{1}{2}, f(3)=\frac{2}{3}, f(4)=\frac{3}{4}$. This inspires the guess that $f(n)=$ $\frac{n-1}{n}$. This is a common technique in mathematics, to try small cases to try to find a pattern. Calculating $f(n)$ for $n=2,3,4$, and guessing $f(n)=\frac{n-1}{n}$, would be worth much of the credit for the problem. Of course, almost nobody got that far and stopped; once you have the guess it is straightforward to prove it by induction.
The base case is already complete. We start with $\frac{n-1}{n}=f(n)=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+$ $\frac{1}{(n-1) \cdot n}$. We add $\frac{1}{n \cdot(n+1)}$ to both sides; the right hand side is $f(n+1)$ by definition. The left hand side is $\frac{n-1}{n}+\frac{1}{n(n+1)}=\frac{(n-1)(n+1)}{n(n+1)}+\frac{1}{n(n+1)}=\frac{n^{2}}{n(n+1)}=\frac{n}{n+1}$. Hence $f(n+1)=\frac{n}{n+1}$, as desired.

Exam statistics: Low grade=27(F); Median grade=33(D) (ouch!); High grade=47(A)

