
Math 579 Exam 4 Solutions

1. How many subsets of [n] are larger than their complements?

We pair off the subsets of [n] by pairing each subset with its complement. If n is odd,
then one of these will always be larger than the other, so exactly half of the subsets
(2n/2 = 2n−1) are larger than their complements. If n is even, this same strategy
works, EXCEPT for those subsets of size n/2. There are

(
n

n/2

)
of them, which are

divided into half as many pairs. Each of these pairs needs to be subtracted off; hence
the answer for even n is 2n−1 − 1

2

(
n

n/2

)
. The book has a typo in its solution.

2. Evaluate the sum
n∑

k=0

1
k+1

(
n
k

)
.

Solution 1: We use the identity
(

n
k

)
= n

k

(
n−1
k−1

)
, which is valid for k 6= 0. In our case,

this condition holds, so we may rewrite the sum to be
n∑

k=0

1
n+1

(
n+1
k+1

)
= 1

n+1

n∑
k=0

(
n+1
k+1

)
=

1
n+1

n+1∑
j=1

(
n+1

j

)
= 1

n+1

(
−1 +

n+1∑
j=0

(
n+1

j

))
= 1

n+1
(−1 + 2n+1)

Solution 2: We begin with (1 + x)n =
∑
k

(
n
k

)
xk. We integrate both sides, from 0 to y,

to get 1
n+1

(1 + x)n+1|y0 =
∑
k

1
k+1

(
n
k

)
xk+1

∣∣y
0
. We simplify to get 1

n+1
((1 + y)n+1 − 1) =∑

k

1
k+1

(
n
k

)
yk+1. Plug in y = 1, and we find

n∑
k=0

1
k+1

(
n
k

)
= 1

n+1
(2n+1 − 1).

3. Let n ∈ N. Prove that
(
2n
n

)
=

n∑
k=0

(
n
k

)2
.

Solution 1: Because n ∈ N, we may rewrite
n∑

k=0

(
n
k

)2
=

n∑
k=0

(
n
k

)(
n

n−k

)
, and give a combi-

natorial proof. Consider 2n students, half male and half female. Let S be the number
of ways to select n of these students. |S| =

(
2n
n

)
, by ignoring gender. But we may also

select n students by first deciding to choose k male students and hence n − k female
students. There are

(
n
k

)(
n

n−k

)
to choose these students. We could do this for any k

with 0 ≤ k ≤ n, hence |S| =
n∑

k=0

(
n
k

)(
n

n−k

)
.

Solution 2: This uses Thm 4.7 in the text, which states that:
(

n+m
k

)
=

k∑
i=0

(
n
i

)(
m

k−i

)
.

This requires n,m, k to all be positive integers. We fix n ∈ N, and set k = n, m = n.

The theorem then simplifies to
(
2n
n

)
=

n∑
i=0

(
n
i

)(
n

n−i

)
. This solves the problem, since again(

n
n−i

)
=
(

n
i

)
.



4. We may write x4 = (x)4 + 6(x)3 + a(x)2 + (x)1, for some integer constant a. First, find

a. Then, use the difference calculus to evaluate in closed form
n∑

k=0

k4.

A cute way to find a is to plug in a value of x. For example, x = 2 gives 24 =
(2)4+6(2)3+a(2)2+(2)1 = 0+0+a·2+2; hence a = 7. Alternatively, we can just expand:
(x)4 +6(x)3 +a(x)2 +(x)1 = x(x−1)(x−2)(x−3)+6x(x−1)(x−2)+ax(x−1)+x =
x4 + (a− 7)x2 + (7− a)x. Hence a = 7.

Now,
∑

0≤k<n+1

k4 =
∑

0≤k<n+1

(k)4 + 6(k)3 + 7(k)2 + (k)1. We apply the fundamental

theorem of difference calculus to get 1
5
(k)5 + 6

4
(k)4 + 7

3
(k)3 + 1

2
(k)2|k=n+1

k=0 = 1
5
(n + 1)5 +

6
4
(n + 1)4 + 7

3
(n + 1)3 + 1

2
(n + 1)2 − (1

5
(0)5 + 6

4
(0)4 + 7

3
(0)3 + 1

2
(0)2). If you want to

simplify this, it’s 6n5+15n4+10n3−n
30

.

5. Let p be prime. Prove that p divides
(

p−1
k

)
+(−1)k+1, for all k satisfying 0 ≤ k ≤ p−1.

HINT: Start by proving that p divides
(

p
k

)
for all k with 1 ≤ k ≤ p− 1.(

p
k

)
= p!

k!(p−k)!
, since p > k > 0. The denominator is the product of many factors, all

strictly less than p; hence p does not divide the denominator. Since prime p divides
the numerator, p must divide

(
p
k

)
. Now,

(
p
k

)
=
(

p−1
k

)
+
(

p−1
k−1

)
. Hence, consecutive terms

in the (p − 1)th row of Pascal’s triangle sum to a multiple of p. We finish the proof
by induction on k. For k = 0,

(
p−1
0

)
= 1 so p divides

(
p−1
0

)
− 1. For k > 0, p divides(

p
k

)
=
(

p−1
k−1

)
+ (−1)k − (−1)k +

(
p−1
k

)
, and p also divides

(
p−1
k−1

)
+ (−1)k by the inductive

hypothesis. Hence p must also divide −(−1)k +
(

p−1
k

)
=
(

p−1
k

)
+ (−1)k+1.

Part II. Guess a closed form for f(n) = 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

(n−1)·n , for all integer n ≥ 2. Then,
prove your formula.

We first calculate f(2) = 1
2
, f(3) = 2

3
, f(4) = 3

4
. This inspires the guess that f(n) =

n−1
n

. This is a common technique in mathematics, to try small cases to try to find a
pattern. Calculating f(n) for n = 2, 3, 4, and guessing f(n) = n−1

n
, would be worth

much of the credit for the problem. Of course, almost nobody got that far and stopped;
once you have the guess it is straightforward to prove it by induction.

The base case is already complete. We start with n−1
n

= f(n) = 1
1·2 + 1

2·3 + 1
3·4 + · · ·+

1
(n−1)·n . We add 1

n·(n+1)
to both sides; the right hand side is f(n+1) by definition. The

left hand side is n−1
n

+ 1
n(n+1)

= (n−1)(n+1)
n(n+1)

+ 1
n(n+1)

= n2

n(n+1)
= n

n+1
. Hence f(n+1) = n

n+1
,

as desired.

Exam statistics: Low grade=27(F); Median grade=33(D) (ouch!); High grade=47(A)


