MATH 579: Combinatorics

Homework 6 Solutions

1. Find a closed form for the generating function for the sequence $1,-1,1,-1,1,-1, \ldots$. We have a formula for this: $\sum_{k \geq 0}(-1)^{k} x^{k}=\frac{1}{1+x}$.
2. Find a closed form for the generating function for the sequence $0,0,0,1,-1,1,-1,1,-1, \ldots$..
We shift the previous problem by 3 , via $x^{3} \sum_{k \geq 0}(-1)^{k} x^{k}=\sum_{k \geq 0}(-1)^{k} x^{k+3}=\frac{x^{3}}{1+x}$.
3. Find a closed form for the generating function for the sequence $\sum_{k \geq 0}(7 k-2) x^{k}$.

We have $\sum_{k \geq 0}(7 k-2) x^{k}=7 \sum_{k \geq 0} k x^{k}-2 \sum_{k \geq 0} x^{k}=7 \frac{x}{(1-x)^{2}}-2 \frac{1}{1-x}=\frac{9 x-2}{(1-x)^{2}}$.
4. Find a closed form for the generating function for the sequence $0,1,4,9,16,25, \ldots$.

Note that $k^{2}=2\binom{k}{2}+k$, so $\sum_{k \geq 0} k^{2} x^{k}=\sum_{k \geq 0} 2\binom{k}{2}+k x^{k}=2 \sum_{k \geq 0}\binom{k}{2} x^{k}+$ $\sum_{k \geq 0} k x^{k}=2 \frac{x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}}=\frac{x^{2}+x}{(1-x)^{3}}$.
5. Find a closed form for the generating function for the Fibonacci numbers.

We have $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$ (and $F_{0}=0, F_{1}=1$). We multiply both sides by x^{n}, and sum over all $n \geq 2$. We get $F(x)-F_{0}-F_{1} x=x\left(F(x)-F_{0}\right)+x^{2} F(x)$, or $F(x)-x=x F(x)+x^{2} F(x)$. We solve for $F(x)$, getting $F(x)=\frac{x}{1-x-x^{2}}$.
6. Solve the recurrence given by $a_{0}=0, a_{1}=1, a_{n}=4 a_{n-2}(n \geq 2)$ using generating functions.
We have $a_{n}=4 a_{n-2}$, for $n \geq 2$. Multiplying both sides by x^{n}, and sum over all $n \geq 2$. We get $A(x)-a_{0}-a_{1} x=4 x^{2} A(x)$, or $A(x)-x=4 x^{2} A(x)$. We solve for $A(x)$, getting $A(x)=\frac{x}{1-4 x^{2}}=\frac{x}{(1-2 x)(1+2 x)}$. We apply partial fractions, getting $A(x)=\frac{1}{4} \frac{1}{1-2 x}-\frac{1}{4} \frac{1}{1+2 x}=\frac{1}{4} \sum_{n \geq 0} 2^{n} x^{n}-\frac{1}{4} \sum_{n \geq 0}(-2)^{n} x^{n}$. Hence $a_{n}=\frac{1}{4} 2^{n}-\frac{1}{4}(-2)^{n}$.
7. Solve the recurrence given by $a_{0}=a_{1}=2, a_{n}=-2 a_{n-1}-a_{n-2}(n \geq 2)$ using generating functions.
We multiply the relation by x^{n} and sum over all $n \geq 2$, getting $A(x)-a_{0}-a_{1} x=$ $-2 x\left(A(x)-a_{0}\right)-x^{2} A(x)$, or $A(x)-2-2 x=-2 x A(x)+4 x-x^{2} A(x)$. We solve for $A(x)$, getting $A(x)=\frac{6 x+2}{1+2 x+x^{2}}=\frac{6 x+2}{(1+x)^{2}}$. Applying partial fractions, we get $A(x)=\frac{6}{1+x}-\frac{4}{(1+x)^{2}}=6 \sum_{n \geq 0}(-1)^{n} x^{n}-4 \sum_{n \geq 0}(n+1)(-1)^{n} x^{n}$. Hence $a_{n}=$ $6(-1)^{n}-4(n+1)(-1)^{n}=2(1-2 n)(-1)^{n}$.
8. Solve the recurrence given by $a_{0}=a_{1}=0, a_{n}=a_{n-1}+2 a_{n-2}+3(n \geq 2)$ using generating functions.
We multiply the relation by x^{n} and sum over all $n \geq 2$, getting $A(x)-a_{0}-a_{1} x=$ $x\left(A(x)-a_{0}\right)+2 x^{2} A(x)+3 \sum_{n \geq 2} x^{n}$, or $A(x)=x A(x)+2 x^{2} A(x)+3\left(\frac{1}{1-x}-1-x\right)$ or $A(x)\left(1-x-2 x^{2}\right)=\frac{3 x^{2}}{1-x}$. Hence $A(x)=\frac{3 x^{2}}{(1-x)(1-2 x)(1+x)}=\frac{1}{2} \frac{1}{1+x}+\frac{1}{1-2 x}-\frac{3}{2} \frac{1}{1-x}=$ $\frac{1}{2} \sum_{n \geq 0}(-1)^{n} x^{n}+\sum_{n \geq 0} 2^{n} x^{n}-\frac{3}{2} \sum_{n \geq 0} x^{n}$, so $a_{n}=\frac{(-1)^{n}-3}{2}+2^{n}$.
9. Count the number of solutions to $a+b+c=n$ in nonnegative integers a, b, c, such that a is a multiple of $3, b \leq 2$, and $c \geq 1$. Find a closed form for the sequence, and compute explicitly the value for $n=20$.
Call the desired answers g_{n}, and the generating function $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. We have $G(x)=\left(1+x^{3}+x^{6}+x^{9}+\cdots\right)\left(1+x+x^{2}\right)\left(x+x^{2}+x^{3}+\cdots\right)=\frac{1}{1-x^{3}} \frac{1-x^{3}}{1-x} \frac{x}{1-x}=$ $\frac{x}{(1-x)^{2}}=\sum_{n \geq 0} n x^{n}$. Hence $g_{n}=n$, and $g_{20}=20$.
10. Count the number of solutions to $a+b+c=n$ in nonnegative integers a, b, c, such that a is even, $b \leq 4$, and $c \geq 1$. Find a closed form for the sequence, and compute explicitly the value for $n=20$.
Call the desired answers g_{n}, and the generating function $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. We have $G(x)=\left(1+x^{2}+x^{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)\left(x+x^{2}+x^{3}+\cdots\right)=$ $\frac{1}{1-x^{2}}\left(1+x+x^{2}+x^{3}+x^{4}\right) \frac{x}{1-x}=\frac{x+x^{2}+x^{3}+x^{4}+x^{5}}{\left(1-x^{2}\right)(1-x)}=x^{2}+2 x+4-\frac{25}{4} \frac{1}{1-x}-\frac{1}{4} \frac{1}{1+x}+\frac{10}{4} \frac{1}{(1-x)^{2}}=$ $x^{2}+2 x+4-\frac{25}{4} \sum_{n \geq 0} x^{n}-\frac{1}{4}(-1)^{n} x^{n}+\frac{10}{4} \sum_{n \geq 0}(n+1) x^{n}=x^{2}+2 x+4+\frac{1}{4} \sum_{n \geq 0}(-25-$ $\left.(-1)^{n}+10 n+10\right) x^{n}$. Hence $g_{n}=\frac{10 n-15-(-1)^{n}}{4}$ for $n \geq 3$. For $n=2$, we have $g_{2}=\frac{10 \cdot 2-15-(-1)^{2}}{4}+1=2$, For $n=1$, we have $g_{1}=\frac{10 \cdot 1-15-(-1)^{1}}{4}+2=1$, and lastly for $n=0$, we have $g_{0}=\frac{10 \cdot 0-15-(-1)^{0}}{4}+4=0$. We also compute $g_{20}=46$.
11. Find the generating function for how many ways there are of making n cents in change, out of pennies, nickels, dimes, and quarters. Then compute explicitly the value for $n=111$.
Call the desired answers g_{n}, and the generating function $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. We have $G(x)=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x^{5}+x^{10}+x^{15}+\cdots\right)\left(1+x^{10}+x^{20}+\right.$ $\left.x^{30}+\cdots\right)\left(1+x^{25}+x^{50}+x^{75}+\cdots\right)=\frac{1}{1-x} \frac{1}{1-x^{5}} \frac{1}{1-x^{10}} \frac{1}{1-x^{25}}$. Don't even try to get the closed form for g_{n}, as most of the roots are complex and messy. Instead, just ask a computer (like Wolfram Alpha) to compute the power series for this function, out to the x^{111} term, which has coefficient 307 . Hence $g_{111}=307$.
12. Consider the recurrence given by $c_{0}=1, c_{n+1}=\sum_{i=0}^{n} c_{i}(n \geq 0)$. Find a generating function and a closed form for the sequence. Hint: Consider $\frac{C(x)}{1-x}$.
Following the hint, we have $C(x) \frac{1}{1-x}=\sum_{n \geq 0} c_{n} x^{n} \sum_{n \geq 0} x^{n}=\sum_{n \geq 0}\left(\sum_{i=0}^{n} c_{i} 1^{n-i}\right) x^{n}=$ $\sum_{n \geq 0}\left(\sum_{i=0}^{n} c_{i}\right) x^{n}=\sum_{n \geq 0} c_{n+1} x^{n}$. Multiplying both sides of this expression by x, we have $C(x) \frac{x}{1-x}=\sum_{n \geq 0} c_{n+1} x^{n+1}=C(x)-c_{0}=C(x)-1$. Rearranging, we get $C(x)\left(\frac{x}{1-x}-1\right)=-1$, or $C(x)=\frac{1-x}{1-2 x}=\frac{1}{2}+\frac{1}{2} \frac{1}{1-2 x}=\frac{1}{2}+\frac{1}{2} \sum_{n \geq 0} 2^{n} x^{n}$. Hence $c_{n}=2^{n-1}$, for $n \geq 1$. For $n=0$, we have $c_{0}=\frac{1}{2}+2^{n-1}=1$.

