MATH 579: Combinatorics
Homework 5 Solutions

1. (Symmetry) \(\binom{a+b}{a} = \binom{a+b}{b} \).

Since \(a+b, a \in \mathbb{Z} \) with \(a+b \geq a \geq 0 \), we may use the factorial form of the binomial coefficient.
\[
\binom{a+b}{a} = \frac{(a+b)!}{a!(a+b-a)!} = \frac{(a+b)!}{a!b!} = \frac{(a+b)!}{b!(a+b-b)!} = \binom{a+b}{b}.
\]

2. (Pascal’s Rule) \(\binom{x}{a} + \binom{x}{a+1} = \binom{x+1}{a+1} \).

We calculate \((a+1)x^a + x^{a+1} = x^a((a+1) + (x - (a+1) + 1)) = x^a(x+1) = (x+1)^{a+1} \). Divide both sides by \((a+1)! \) and the result follows.

3. (Extraction) \(\binom{x}{a} = \frac{x(x-1) \cdots (x-a+1)}{a!} \). (provided \(a \neq 0 \))

Peeling off the first term, we see that \(x^a = x \cdot (x-1)^{a-1} \). Divide both sides by \(a! = a \cdot (a-1)! \) and the result follows.

4. (Committee/Chair) \((a+1)\binom{x}{a+1} = x\binom{x-1}{a} \).

This symmetric version of the extraction identity comes from multiplying both sides by \(a \), and replacing \(a \) by \(a+1 \). It gets its name from the special case when \(x \in \mathbb{N} \). Then, the LHS counts the ways to pick a committee of \(a+1 \) out of \(x \) people, then pick a chair from the committee’s members. The RHS counts the ways to pick the chair first, out of \(x \) people, then pick the remaining \(a \) members of the committee out of the remaining \(x-1 \) people.

5. (Twisting) \(\binom{x}{a} \binom{x-a}{b} = \binom{x}{b} \binom{x-a}{a} \).

We see that \(x^a(x-a)^b = x(x-1) \cdots (x-a+1)(x-a)(x-a-1) \cdots (x-a-b+1) = x^{a+b} = x(x-1) \cdots (x-b+1)(x-b)(x-b-1) \cdots (x-b-a+1) = x^a(x-b)^a \). Divide both sides by \(ab! = b!a! \) and the result follows.

6. (Negation) \(\binom{x}{a} = (-1)^a \binom{-x-1}{a} \).

We write \(x^a = (x-0)(x-1)(x-2) \cdots (x-a+2)(x-a+1) = (-1)^a(0-x)(1-x)(2-x) \cdots (a-x-2)(a-x-1)(a-x-2) \cdots (a-x-1)(a-x-2)(a-x-3) \cdots (a-x-1-a+1)(a-x-1)(a-x-1-a+1) = (-1)^a(a-x-1)^a \).

Divide both sides by \(a! \) and the result follows.

7. \(\binom{-1}{a} = (-1)^a \binom{2a}{a} \cdot 2^{-2a} \).

For this problem and the next it is useful (but not necessary) to define the double factorial, \(n!! = n \cdot (n-2) \cdots 4 \cdot 2 \), with \(0!! = 1!! = 1 \). We now prove a lemma: For \(n = 2k - 1 \) odd, \(n!! = (2k-1)! \).

Proof: Induction on \(k \). \(k = 1 \) !!!! = 1 = \(\frac{2!}{2!} \). Assume that \(n!! = \frac{(2k)!}{2^kk!} \), and multiply both sides by \(n + 2 = 2k + 1 \). We get \((n+2)!! = (n+2) \cdot n!! = \frac{(2k+1)(2k)!}{2^k(k+1)!} = \frac{(2k+2)(2k+1)(2k)!}{(2k+1)2^k(k+1)!} = \frac{(2k+1)!}{2^k(k+1)!} \).

Now, \((-\frac{1}{2})^{a} = (\frac{1}{2})^{a-1} = (\frac{1}{2}) \cdots (\frac{1}{2} - a + 1) = (\frac{1}{2})(\frac{3}{2})(\frac{5}{2}) \cdots (\frac{2a-1}{2}) = (-1)^{a}2^{-a}(2a - 1)!! = (-1)^{a}2^{-a}(2a - 1)!! = (-1)^{a}2^{-a}(2a - 1)!! \cdot 2^{-2a} = (-1)^{a}2^{-a}(2a - 1)!! \cdot 2^{-2a} = (2a - 1)!! \cdot 2^{-2a} \).

Now divide both sides by \(a! \).

8. \(\binom{\frac{1}{2}}{a} = (-1)^{a+1}(\frac{2a}{a}) \cdot 2^{-2a} \).

We have \(\binom{\frac{1}{2}}{a} = (\frac{1}{2})(\frac{1}{2} - 1)(\frac{1}{2} - 2) \cdots (\frac{1}{2} - a + 1) = (\frac{1}{2})(\frac{3}{2})(\frac{5}{2}) \cdots (\frac{2a-1}{2}) = (-1)^{a+1}(\frac{2a}{a}) \cdot 2^{-2a} \).

Now divide both sides by \(a! \).
9. \[(\text{Chu-Vandermonde}) \quad \binom{x+y}{a} = \sum_{k=0}^{a} \binom{x}{k} \binom{y}{a-k}. \quad \text{Hint: } (t+1)^x(t+1)^y\]

Assuming \(|t| < 1\), we apply Newton’s binomial theorem three times as follows. \[
\sum_{a \geq 0} \binom{x+y}{a} t^a = (t+1)^{x+y} = (t+1)^x(t+1)^y = \left(\sum_{a \geq 0} \binom{x}{a} t^a \right) \left(\sum_{a \geq 0} \binom{y}{a} t^a \right) = \sum_{a \geq 0} \left(\sum_{k=0}^{a} \binom{a}{k} \binom{y}{a-k} \right) t^a,
\] using the formula for the product of power series. We now equate coefficients of \(t^a\) and are done.

10. \[(\text{Chu-Vandermonde II}) \quad (x+y)^a = \sum_{k=0}^{a} \binom{a}{k} x^k y^{a-k}.\]

Multiply both sides of the Chu-Vandermonde identity by \(a!\) and note that \(a! \binom{x}{k} \binom{y}{a-k} = \frac{a!}{k!(a-k)!} x^k y^{a-k} = \binom{a}{k} x^k y^{a-k}.

11. \[
\sum_{k=0}^{a} \binom{a}{k}^2 = \binom{2a}{a}.\quad \text{Hint: Chu-Vandermonde}
\]

Apply Chu-Vandermonde with \(x = y = a\). Note that, by the symmetry identity, \(\binom{a}{a-k} = \binom{a}{k}\).

12. \[(\text{Hockey Stick}) \quad \sum_{k=a}^{a+b} \binom{k}{a} = \binom{a+b+1}{a+1}.\]

Induction on \(b\). If \(b = 0\), the LHS is \(\binom{a}{a} = 1 = \binom{a+1}{a+1}\). Suppose now that \(\sum_{k=a}^{a+b} \binom{k}{a} = \binom{a+b+1}{a+1}\), and add \(\binom{a+b+1}{a}\) to both sides. We have \(\sum_{k=a}^{a+b+1} \binom{k}{a} = \binom{a+b+1}{a} + \binom{a+b+1}{a+1} = \binom{a+b+2}{a+1}\), applying Pascal’s Rule.

13. Suppose that \(b \leq \frac{a-1}{2}\). Then \(\binom{a}{b} \leq \binom{a}{b+1}\).

We have \(a \geq 2b+1\), hence \(a-b \geq b+1\), hence \(\frac{1}{b+1} \leq \frac{1}{a-b}\). We multiply both sides by \(\frac{a!}{b!(a-b-1)!}\) to get \(\frac{a!}{(b+1)!(a-b-1)!} \geq \frac{a!}{b!(a-b)!}\), the desired result.

14. Suppose that \(b \geq \frac{a-1}{2}\). Then \(\binom{a}{b} \geq \binom{a}{b+1}\).

Set \(b' = a - (b+1)\). Since \(b \geq \frac{a-1}{2}\), \(b+1 \geq \frac{a+1}{2}\) and hence \(b' = a - (b+1) \leq a - \frac{a+1}{2} = \frac{a-1}{2}\). Apply the previous problem to get \(\binom{a}{b'} \leq \binom{a}{b+1}\). Apply the symmetry identity twice to get \(\binom{a}{a-b'} \leq \binom{a}{a-b+1}\), which is the desired result since \(a-b' = b+1\) and \(a-b' - 1 = b\).

This problem, and the previous, prove that each row of Pascal’s triangle is nondecreasing until the middle, and then nonincreasing. Such sequences are called unimodal.

15. \(\frac{2^n}{2n+1} \leq \binom{2n}{n} \leq 4^n.\quad \text{Hint: } (1+1)^{2n}\)

We have \(4^n = (1+1)^{2n} = \sum_{i=0}^{2n} \binom{2n}{i}\), by Newton’s binomial theorem. Since all the summands are nonnegative, if we replace all but \(\binom{2n}{n}\) with zero, the sum only decreases: \(4^n = \sum_{i=0}^{2n} \binom{2n}{i} \geq \binom{2n}{n}\). This gives the upper bound. By unimodality proved by the previous two problems, the largest summand is \(\binom{2n}{n}\). Hence if we replace each summand by this largest one, the sum only increases: \(4^n = \sum_{i=0}^{2n} \binom{2n}{i} \leq (2n+1)\binom{2n}{n}\). Dividing by \(2n+1\) gives the lower bound.