1. For \(f(x) = 47x^2 + x - 2 \), find all solutions to \(f(x) \equiv 0 \pmod{47^2} \).

BONUS: Find all solutions to \(f(x) \equiv 0 \pmod{47^3} \).

We use the lifting theorem, so we first solve \(f(x) \equiv 0 \pmod{47} \). Conveniently, \(47x^2 + x - 2 \equiv x - 2 \pmod{47} \), so \(x = 2 \) is the unique root modulo \(47 \). Now, \(f'(x) = 94x + 1 \), so \(f'(2) = 189 \equiv 1 \pmod{47} \), so this root will lift to a unique root modulo \(47^2 \). We solve \(f'(2)t \equiv -f(2)/47 \pmod{47} \), which simplifies to \(1t \equiv -188/47 = -4 \equiv 43 \pmod{47} \). Hence \(x = 2 + 43 \cdot 47 = 2023 \) is the unique root of \(f(x) \) modulo \(47^2 = 2209 \).

BONUS: We start with the sole root \(r = 2023 \), modulo \(47^2 \). We have \(f'(2023) = 94 \cdot 2023 + 1 \equiv 1 \pmod{47} \), so again this root will lift uniquely modulo \(47^3 \). We solve \(f'(2023)t \equiv -f(2023)/47^2 \pmod{47} \), which simplifies to \(1t \equiv -87076 = 15 \pmod{47} \). Hence \(x = 2023 + 15 \cdot 47^2 = 35158 \) is the unique root of \(f(x) \) modulo \(47^3 = 103823 \).

2. For \(n \in \mathbb{N} \), prove that \(\phi(n) \) is even if and only if \(n > 2 \).

Suppose that \(p^a \mid n \) for any odd prime \(p \) and \(a \in \mathbb{N} \), then (since \(\phi \) is multiplicative) we take \(a \) maximal and have \(\phi(n) = \phi(p^a) \phi\left(\frac{n}{p^a}\right) = (p^a - p^{a-1}) \phi\left(\frac{n}{p^a}\right) \).

But \(p^a \) is odd, and so is \(p^{a-1} \), so their difference is even, and so hence is \(\phi(n) \). Hence \(\phi(n) \) is even for every \(n \) that is not a power of 2 (powers of 2 have not yet been addressed). Now \(\phi(2^a) = 2^a - 2^{a-1} \). This is even for \(a \geq 2 \), being the difference of two even numbers. Hence \(\phi(n) \) is even for every \(n \) except possibly \(n = 1, 2 \). But in fact \(\phi(1) = \phi(2) = 1 \), which are odd.

3. High score=101, Median score=77, Low score=50