Math 522 Exam 8 Solutions

1. Calculate $\phi(9,800,000)$.

BONUS: Find all $n \in \mathbf{N}$ such that $\phi(n)=20$.
We factor $9,800,000=2^{6} 5^{5} 7^{2}$. Hence $\phi(9,800,000)=\phi\left(2^{6}\right) \phi\left(5^{5}\right) \phi\left(7^{2}\right)=\left(2^{6}-2^{5}\right)\left(5^{5}-\right.$ $\left.5^{4}\right)\left(7^{2}-7^{1}\right)=(32)(2500)(42)=3,360,000$.
BONUS: We first factor twenty into natural numbers in every possible way: 20, 20 . $1,10 \cdot 2,10 \cdot 2 \cdot 1,5 \cdot 4,5 \cdot 4 \cdot 1,5 \cdot 2 \cdot 2,5 \cdot 2 \cdot 2 \cdot 1$. We will repeatedly use that $\phi\left(p^{k}\right)=p^{k-1}(p-1)$. We first show that $\phi\left(p^{k}\right)=1$ only for $p=2, k=1[p r o o f:(p-1) \mid 1$, so $p-1=1]$. We next show that $\phi\left(p^{k}\right)=2$ for $(p=2, k=2)$ and $(p=3, k=1)$, only [proof: since $p-1 \mid 2$, either $p-1=1$, or $p-1=2]$. We next show that $\phi\left(p^{k}\right)$ never equals 5 [proof: $p-1=1$ or $p-1=5$]. We next show that $\phi\left(p^{k}\right)=10$ only for $p=11, k=1$ [proof: several cases; $p-1=1,2,5,10$]. Finally, we show that $\phi\left(p^{k}\right)=20$ only for $p=5, k=2$ [proof: $p-1=1,2,4,5,10,20]$. Putting this all together, we have $\phi(25)=20, \phi(50)=20 \cdot 1, \phi(33)=10 \cdot 2, \phi(44)=10 \cdot 2, \phi(66)=10 \cdot 2 \cdot 1$, and no others are possible since we can't make 5.
2. Let n be a positive integer with $n>2$. Let R be any reduced residue system modulo n. Prove that n divides the sum of all the elements of R.
This is essentially exercise \#4 in 5-2. Please remember to keep up with your homework.
The key is to pair off elements of R in such a way that n divides the sum of each pair. We pair $r \in R$ with an element of R congruent to $n-r$. Note that $f: r \rightarrow n-r$ satisfies $f(f(r))=r$, so it induces a pairing. This element is in R, provided that $\operatorname{gcd}(n-r, n)=1$. There are several ways to prove this fact. One way is $\operatorname{gcd}(n-r, n)=$ $\operatorname{gcd}(n-r, n-(n-r))=\operatorname{gcd}(n-r, r)=\operatorname{gcd}(n-r+r, r)=\operatorname{gcd}(n, r)$, where twice we applied the theorem that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b k, b)$ for any integer k. Another way is to note that $\operatorname{gcd}(-r, n)=\operatorname{gcd}(r, n)$, and that $-r$ is congruent to $n-r$ modulo n.
The only time this pairing will fail is if the two elements of our pairing are not different elements of R (that is, r is paired with itself). One way to prove this is with exercise 4 in Sectin 6.1. Another way is directly: $r \equiv n-r$ implies that n divides $r-(n-r)=2 r-n$. This is equivalent to $n \mid 2 r$. This, in turn, is equivalent to $r=k(n / 2)$, for some integer k. If n is odd, then k must be even and $\operatorname{gcd}(r, n)=n$; if n is even, then $\operatorname{gcd}(r, n) \geq n / 2$. In any case, this is violative of $r \in R$. Hence $r, n-r$ will always be different elements of R, provided $n>2$.
3. Exam grades: $102,97,87,86,86,85,81,80,79,76,76,72,65$

