Math 522 Exam 8 Solutions

1. Calculate $\phi(9, 800, 000)$.

BONUS: Find all $n \in \mathbf{N}$ such that $\phi(n) = 20$.

We factor 9,800,000 = $2^{6}5^{5}7^{2}$. Hence $\phi(9,800,000) = \phi(2^{6})\phi(5^{5})\phi(7^{2}) = (2^{6}-2^{5})(5^{5}-5^{4})(7^{2}-7^{1}) = (32)(2500)(42) = 3,360,000.$

BONUS: We first factor twenty into natural numbers in every possible way: $20, 20 \cdot 1, 10 \cdot 2 \cdot 1, 5 \cdot 4, 5 \cdot 4 \cdot 1, 5 \cdot 2 \cdot 2, 5 \cdot 2 \cdot 2 \cdot 1$. We will repeatedly use that $\phi(p^k) = p^{k-1}(p-1)$. We first show that $\phi(p^k) = 1$ only for p = 2, k = 1 [proof: (p-1)|1, so p-1=1]. We next show that $\phi(p^k) = 2$ for (p = 2, k = 2) and (p = 3, k = 1), only [proof: since p-1|2, either p-1=1, or p-1=2]. We next show that $\phi(p^k)$ never equals 5 [proof: p-1=1 or p-1=5]. We next show that $\phi(p^k) = 10$ only for p=11, k=1[proof: several cases; p-1=1, 2, 5, 10]. Finally, we show that $\phi(p^k) = 20$ only for p=5, k=2 [proof: p-1=1, 2, 4, 5, 10, 20]. Putting this all together, we have $\phi(25) = 20, \phi(50) = 20 \cdot 1, \phi(33) = 10 \cdot 2, \phi(44) = 10 \cdot 2, \phi(66) = 10 \cdot 2 \cdot 1$, and no others are possible since we can't make 5.

2. Let n be a positive integer with n > 2. Let R be any reduced residue system modulo n. Prove that n divides the sum of all the elements of R.

This is essentially exercise #4 in 5-2. Please remember to keep up with your homework.

The key is to pair off elements of R in such a way that n divides the sum of each pair. We pair $r \in R$ with an element of R congruent to n - r. Note that $f: r \to n - r$ satisfies f(f(r)) = r, so it induces a pairing. This element is in R, provided that gcd(n-r,n) = 1. There are several ways to prove this fact. One way is gcd(n-r,n) =gcd(n-r,n-(n-r)) = gcd(n-r,r) = gcd(n-r+r,r) = gcd(n,r), where twice we applied the theorem that gcd(a,b) = gcd(a+bk,b) for any integer k. Another way is to note that gcd(-r,n) = gcd(r,n), and that -r is congruent to n-r modulo n.

The only time this pairing will fail is if the two elements of our pairing are not different elements of R (that is, r is paired with itself). One way to prove this is with exercise 4 in Sectin 6.1. Another way is directly: $r \equiv n-r$ implies that n divides r-(n-r) = 2r-n. This is equivalent to n|2r. This, in turn, is equivalent to r = k(n/2), for some integer k. If n is odd, then k must be even and gcd(r, n) = n; if n is even, then $gcd(r, n) \ge n/2$. In any case, this is violative of $r \in R$. Hence r, n - r will always be different elements of R, provided n > 2.

3. Exam grades: 102, 97, 87, 86, 86, 85, 81, 80, 79, 76, 76, 72, 65