Math 522 Exam 6 Solutions

1. Find a reduced residue system modulo 15 consisting entirely of primes.

The 'standard' reduced residue system is $\{1,2,4,7,8,11,13,14\}$. Many of these are primes already, but we need to replace 1,4,8,14, by finding primes congruent to them modulo 15. $1+15=16$, but $1+30=31.4+15=19,8+15=23,14+15=29$. Hence $\{31,2,19,7,23,11,13,29\}$ is a solution.
BONUS: $1 \equiv 1 \cdot 1 \equiv 2 \cdot 8 \equiv 4 \cdot 4 \equiv 7 \cdot 13 \equiv 11 \cdot 11 \equiv 14 \cdot 14$.
So $31^{-1}=31,2^{-1}=23,19^{-1}=19,7^{-1}=13,23^{-1}=2,11^{-1}=11,13^{-1}=7,29^{-1}=29$.
An important theorem of Dirichlet's on primes in arithmetic progressions states that you may replace any element from the reduced residue system with INFINITELY many different primes.
2. Fix $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$. Suppose that $R=\left\{r_{i}: 1 \leq i \leq m\right\}$ is a complete residue system modulo m, and that $S=\left\{s_{j}: 1 \leq j \leq n\right\}$ is a complete residue system modulo n. Prove that $T=n R+m S=\left\{n r_{i}+m s_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a complete residue system modulo $m n$.
The strategy will be to use the main theorem proved in class for this section. To prove that T is a complete residue system, we need to show that any two different elements of T are incongruent, and we need to show that $|T|=m n$.
Suppose two elements of T were congruent; then $n r_{i}+m s_{j} \equiv n r_{i}^{\prime}+m s_{j}^{\prime}(\bmod m n)$. Because $\operatorname{gcd}(m, n)=1$, this is logically equivalent (by an earlier theorem) to $n r_{i}+m s_{j} \equiv$ $n r_{i}^{\prime}+m s_{j}^{\prime}(\bmod m) A N D n r_{i}+m s_{j} \equiv n r_{i}^{\prime}+m s_{j}^{\prime}(\bmod n)$.
From the first equivalence, we may conclude that $n r_{i} \equiv n r_{i}^{\prime}(\bmod m)$. But, since $\operatorname{gcd}(n, m)=1$, we may divide by n to get $r_{i} \equiv r_{i}^{\prime}(\bmod m)$. Since r_{i}, r_{i}^{\prime} are in R, they must in fact be the same element of R.
From the second equivalence, we proceed similarly. We conclude that $m s_{j} \equiv m s_{j}^{\prime}$ ($\bmod n)$. But, since $\operatorname{gcd}(n, m)=1$, we may divide by m to get $s_{j} \equiv s_{j}^{\prime}(\bmod n)$. Since s_{j}, s_{j}^{\prime} are in S, they must in fact be the same element of S.
But then $n r_{i}+m s_{j}$ and $n r_{i}^{\prime}+m s_{j}^{\prime}$ are in fact the same element of T. Hence, any two different elements of T are incongruent.

We now show that $|T|=m n$. If $n r_{i}+m s_{j}=n r_{i}^{\prime}+m s_{j}^{\prime}$, then in particular $n r_{i}+m s_{j} \equiv$ $n r_{i}^{\prime}+m s_{j}^{\prime}(\bmod m n)$. But we've already shown this to be impossible in the first part of the problem, hence the elements of T are unequal (i.e. all different). Note: This proof is nontrivial; if $\operatorname{gcd}(m, n) \neq 1$, then $|T|$ might not be mn; for example if $R=\{0,1\}, S=\{0,1\}, m=n=2$, we have $T=\{0,2,4\}$.
3. Exam grades: $95,95,94,92,91,88,83,82,80,78,76,66,64,57$

