Math 522 Exam 2 Solutions

1. Find all pairs of positive integers (x, y) such that $21 x+15 y=363$, if any exist.

We find $3=\operatorname{gcd}(21,15)$, and $3 \mid 363$, so integer solutions exist (though not necessarily positive integer solutions). We turn to our old favorite, trial and error. $x=1$ gives $y=114 / 5, x=2$ gives $y=107 / 5$, but $x=3$ gives the solution $(3,20)$. To find other solutions, add $5=15 / 3$ to x and subtract $7=21 / 3$ from y, to get the other two solutions $(8,13)$ and $(13,6)$. No other positive integer solutions exist, since all other integer solutions have either x or y negative.
2. Let m, n, a, b be integers, with $b \neq 0$. Suppose that $\operatorname{gcd}(m, a b)=1$. Prove that $\operatorname{gcd}(m a+n b, b)=\operatorname{gcd}(a, b)$.
Note that $\operatorname{gcd}(m, a) \in C D(m, a b)$, so $\operatorname{gcd}(m, a) \mid \operatorname{gcd}(m, a b)=1$. Similarly, $\operatorname{gcd}(m, b)=$ 1. By part 5 of the $G C D$ theorem proved in class, since $\operatorname{gcd}(m, a)=1$, we must have $\operatorname{gcd}(m, b) \operatorname{gcd}(a, b)=\operatorname{gcd}(a m, b)$. However, since $\operatorname{gcd}(m, b)=1$, we must in fact have $\operatorname{gcd}(a, b)=\operatorname{gcd}(a m, b)$. By part 3 of the same theorem, we have $\operatorname{gcd}(a m, b)=$ $\operatorname{gcd}(a m+n b, b)$. Combining these two gives $\operatorname{gcd}(a, b)=\operatorname{gcd}(a m+n b, b)$, as desired.
Alternate solution: Let $d=\operatorname{gcd}(m a, b), e=\operatorname{gcd}(a, b)$. First, since $e \in C D(m a, b)$ we have $e \leq d$. Second, we multiply the two equations $\alpha m+\beta a b=1, \gamma a+\delta b=e$, to get $a m(\alpha \gamma)+b\left(\beta \gamma a^{2}+\beta \delta a b+\alpha \delta m\right)=e$. Hence $e \in P S(m a, b)$ so $e \geq d$. Hence $e=d$.
3. Exam grades: $98,90,90,88,85,83,81,80,80,77,75,75,75,73,70$

