
Math 522 Exam 12 Solutions

1. Using EITHER Legendre symbols or Jacobi symbols, determine whether x2 ≡ 667 (
mod 919) has solutions. Be sure to specify which you use.

If we use Jacobi symbols, we don’t need to factor 667 (nor, subsequently, 63 or 37).

We calculate:
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If we use Legendre symbols, we first need to factor 667 = 23 · 29. We calculate:(
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In either case, the answer is ‘yes’. :-)

NOTE: Both Legendre and Jacobi symbols can’t handle even numbers in the bottom,
so there is no “quadratic reciprocity” if the top is even – you need to factor out all the
2’s first.

2. For all odd m ≥ 3, prove that if the Jacobi symbol
(
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)
= −1, then x2 ≡ n ( mod m)

has no solutions.

Factor m = pa1
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k . The Jacobi symbol is defined as a product of Legendre

symbols:
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either 1 or -1 (none of them can be zero); further, at least one of them must be −1

(otherwise their product would be 1). Without loss of generality, suppose
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Hence, x2 ≡ n ( mod p1) has no solutions; in other words, p1 does not divide x2 − n,
for any integer x. Now, suppose that x2 ≡ n ( mod m) had a solution. Then m|x2 − n
for some integer x. But p1|m, so p1|x2 − n, but we have shown that this is impossible.

3. Exam grades: 105, 98, 94, 88, 87, 87, 86, 84, 82, 80, 79, 75, 71, 67

4. I’ve tabulated your overall exam averages; this is after dropping your lowest two exams
and counting your best exam double. This is still subject to change a little, since this
doesn’t account for extra credit on the last exam. Scores:

101, 100, 97, 93, 93, 90, 90, 89, 86, 84, 83, 82, 80, 71


