Math 522 Exam 12 Solutions

1. Using EITHER Legendre symbols or Jacobi symbols, determine whether \(x^2 \equiv 667 \pmod{919} \) has solutions. Be sure to specify which you use.

 If we use Jacobi symbols, we don’t need to factor 667 (nor, subsequently, 63 or 37).
 We calculate: \(\left(\frac{667}{919} \right) = - \left(\frac{919}{667} \right) = - \left(\frac{29}{667} \right)^2 \left(\frac{63}{667} \right) = -(1)(-1)(667/63) = \left(\frac{37}{63} \right) = \left(\frac{26}{37} \right) \left(\frac{13}{37} \right) = (-1)^{(27-1)(37-1)}\left(\frac{11}{13} \right) = -(\frac{11}{17}) = -(\frac{2}{17}) = -(-1)^{\frac{17-1}{2}} = -(-1)^{15} = 1. \)

 If we use Legendre symbols, we first need to factor 667 = 23 · 29. We calculate:
 \(\left(\frac{667}{919} \right) = \left(\frac{23}{919} \right) \left(\frac{-1}{23} \right) \left(\frac{919}{29} \right) = \left(\frac{-1}{23} \right) \left(\frac{20}{29} \right) = -(-1)^{\frac{23-1}{2}}\left(\frac{2}{29} \right)^2 \left(\frac{5}{29} \right) = \left(\frac{29}{5} \right) = \left(\frac{2}{5} \right)^2 = 1. \)

 In either case, the answer is ‘yes’. :-)

 NOTE: Both Legendre and Jacobi symbols can’t handle even numbers in the bottom, so there is no “quadratic reciprocity” if the top is even – you need to factor out all the 2’s first.

2. For all odd \(m \geq 3 \), prove that if the Jacobi symbol \(\left(\frac{n}{m} \right) = -1 \), then \(x^2 \equiv n \pmod{m} \) has no solutions.

 Factor \(m = p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k} \). The Jacobi symbol is defined as a product of Legendre symbols: \(\left(\frac{n}{m} \right) = \left(\frac{n}{p_1} \right)^{a_1} \left(\frac{n}{p_2} \right)^{a_2} \cdots \left(\frac{n}{p_k} \right)^{a_k} \). Because \(\left(\frac{n}{m} \right) = -1 \), each \(\left(\frac{n}{p_i} \right) \) must be either 1 or -1 (none of them can be zero); further, at least one of them must be -1 (otherwise their product would be 1). Without loss of generality, suppose \(\left(\frac{n}{p_1} \right) = -1 \). Hence, \(x^2 \equiv n \pmod{p_1} \) has no solutions; in other words, \(p_1 \) does not divide \(x^2 - n \), for any integer \(x \). Now, suppose that \(x^2 \equiv n \pmod{m} \) had a solution. Then \(m \mid x^2 - n \) for some integer \(x \). But \(p_1 \mid m \), so \(p_1 \mid x^2 - n \), but we have shown that this is impossible.

3. Exam grades: 105, 98, 94, 88, 87, 87, 86, 84, 82, 80, 79, 75, 71, 67

4. I’ve tabulated your overall exam averages; this is after dropping your lowest two exams and counting your best exam double. This is still subject to change a little, since this doesn’t account for extra credit on the last exam. Scores:

 101, 100, 97, 93, 93, 90, 90, 89, 86, 84, 83, 82, 80, 71