Math 522 Exam 12 Solutions

1. Using EITHER Legendre symbols or Jacobi symbols, determine whether $x^{2} \equiv 667$ (mod 919) has solutions. Be sure to specify which you use.

If we use Jacobi symbols, we don't need to factor 667 (nor, subsequently, 63 or 37). We calculate: $\left(\frac{667}{919}\right)=-\left(\frac{919}{667}\right)=-\left(\frac{252}{667}\right)=-\left(\frac{2}{667}\right)^{2}\left(\frac{63}{667}\right)=-(1)(-1)\left(\frac{667}{63}\right)=\left(\frac{37}{63}\right)=$ $\left(\frac{63}{37}\right)=\left(\frac{26}{37}\right)=\left(\frac{2}{37}\right)\left(\frac{13}{37}\right)=(-1)^{\frac{37^{2}-1}{8}}\left(\frac{37}{13}\right)=(-1)^{171}\left(\frac{11}{13}\right)=-\left(\frac{13}{11}\right)=-\left(\frac{2}{11}\right)=$ $-(-1)^{\frac{11^{2}-1}{8}}=-(-1)^{15}=1$.
If we use Legendre symbols, we first need to factor $667=23 \cdot 29$. We calculate: $\left(\frac{667}{919}\right)=\left(\frac{23}{919}\right)\left(\frac{29}{919}\right)=-\left(\frac{919}{23}\right)\left(\frac{919}{29}\right)=-\left(\frac{-1}{23}\right)\left(\frac{20}{29}\right)=-(-1)^{\frac{23-1}{2}}\left(\frac{2}{29}\right)^{2}\left(\frac{5}{29}\right)=\left(\frac{5}{29}\right)=$ $\left(\frac{29}{5}\right)=\left(\frac{4}{5}\right)=\left(\frac{2}{5}\right)^{2}=1$.
In either case, the answer is 'yes'. :-)
NOTE: Both Legendre and Jacobi symbols can't handle even numbers in the bottom, so there is no "quadratic reciprocity" if the top is even - you need to factor out all the 2's first.
2. For all odd $m \geq 3$, prove that if the Jacobi symbol $\left(\frac{n}{m}\right)=-1$, then $x^{2} \equiv n(\bmod m)$ has no solutions.

Factor $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$. The Jacobi symbol is defined as a product of Legendre symbols: $\left(\frac{n}{m}\right)=\left(\frac{n}{p_{1}}\right)^{a_{1}{ }^{k}}\left(\frac{n}{p_{2}}\right)^{a_{2}} \cdots\left(\frac{n}{p_{k}}\right)^{a_{k}}$. Because $\left(\frac{n}{m}\right)=-1$, each $\left(\frac{n}{p_{i}}\right)$ must be either 1 or -1 (none of them can be zero); further, at least one of them must be -1 (otherwise their product would be 1). Without loss of generality, suppose $\left(\frac{n}{p_{1}}\right)=-1$. Hence, $x^{2} \equiv n\left(\bmod p_{1}\right)$ has no solutions; in other words, p_{1} does not divide $x^{2}-n$, for any integer x. Now, suppose that $x^{2} \equiv n(\bmod m)$ had a solution. Then $m \mid x^{2}-n$ for some integer x. But $p_{1} \mid m$, so $p_{1} \mid x^{2}-n$, but we have shown that this is impossible.
3. Exam grades: $105,98,94,88,87,87,86,84,82,80,79,75,71,67$
4. I've tabulated your overall exam averages; this is after dropping your lowest two exams and counting your best exam double. This is still subject to change a little, since this doesn't account for extra credit on the last exam. Scores:
$101,100,97,93,93,90,90,89,86,84,83,82,80,71$

