Math 522 Exam 11 Solutions

1. Set $\alpha=2^{99}$. Is $\binom{2 \alpha-1}{\alpha-1}$ even or odd?

BONUS: For all $k \in \mathbb{N}_{0}$, set $\alpha=2^{k}$, and determine whether $\binom{2 \alpha-1}{\alpha-1}$ is even or odd.
Recall a useful fact from arithmetic: $1+2+2^{2}+2^{3}+\cdots+2^{w}=2^{w-1}-1$. This can be assumed as "common knowledge", or proved as a partial sum of a geometric series, or by induction, or by writing numbers in binary. Note that $\binom{2 \alpha-1}{\alpha-1}=\frac{(2 \alpha-1)!}{(\alpha-1)!\alpha!}$.
It's almost easier to do the bonus first. We need to know how many 2's divide (2 2^{c})! and $\left(2^{c}-1\right)$!, for every natural number c.
The former is $\left\lfloor 2^{c} / 2\right\rfloor+\left\lfloor 2^{c} / 2^{2}\right\rfloor+\left\lfloor 2^{c} / 2^{3}\right\rfloor+\cdots=2^{c-1}+2^{c-2}+2^{c-3}+\cdots+1=2^{c}-1$. The latter is $\left\lfloor\left(2^{c}-1\right) / 2\right\rfloor+\left\lfloor\left(2^{c}-1\right) / 2^{2}\right\rfloor+\left\lfloor\left(2^{c}-1\right) / 2^{3}\right\rfloor+\cdots=\left(2^{c-1}-1\right)+\left(2^{c-2}-1\right)+\left(2^{c-3}-1\right)+\cdots+(1-1)=$ $\left(2^{c-1}+2^{c-2}+2^{c-3}+\cdots+1\right)-c=2^{c}-1-c$.
So, the number of 2's that divide $\frac{\left(2^{k+1}-1\right)!}{\left(2^{k}\right)!\left(2^{k}-1\right)!}$ is $\left(2^{k+1}-k-2\right)-\left(2^{k}-1\right)-\left(2^{k}-k-1\right)=0$. Since no 2's are left, the expression is odd for all k.
2. Prove that there exist infinitely many primes congruent to $3(\bmod 4)$.

Suppose there were finitely many (say k) such primes; call them $p_{1}, p_{2}, \ldots p_{k}$. Set $N=4 p_{1} p_{2} \cdots p_{k}-1$, and consider the prime factorization $q_{1} q_{2} \cdots q_{j}$ of N. Suppose that one of the $q_{1}, \ldots, q_{j}\left(s a y q_{1}\right)$ is congruent to 3 (mod 4). Then it would be among the finite collection $\left\{p_{1}, \ldots, p_{k}\right\}$, and so $q_{1}\left|N, q_{1}\right|(N+1)$ and hence $q_{1} \mid \operatorname{gcd}(N, N+1)=1$, which is impossible since q_{1} is prime. Hence each of the q 's is congruent to 0, 1, or 2 (mod 4). But no product of these can equal 3 (mod 4), which contradicts the fact that N is congruent to 3 (mod 4).
There is a wonderful theorem of Dirichlet (first conjectured by Gauss) that if gcd $(a, b)=$ 1, then there are infinitely many primes congruent to a (mod b). Further, if we add the reciprocals of these primes, that sum diverges. This theorem is very difficult to prove.
3. Exam grades: $104,99,87,83,78,78,75,70,69,68,68,67,53$

