Math 522 Exam 11 Solutions

1. Set $\alpha = 2^{99}$. Is $\binom{2\alpha-1}{\alpha-1}$ even or odd?

BONUS: For all $k \in \mathbb{N}_0$, set $\alpha = 2^k$, and determine whether $\binom{2\alpha-1}{\alpha-1}$ is even or odd.

Recall a useful fact from arithmetic: $1 + 2 + 2^2 + 2^3 + \cdots + 2^w = 2^{w-1} - 1$. This can be assumed as "common knowledge", or proved as a partial sum of a geometric series, or by induction, or by writing numbers in binary. Note that $\binom{2\alpha-1}{\alpha-1} = \frac{(2\alpha-1)!}{(\alpha-1)!\alpha!}$.

It's almost easier to do the bonus first. We need to know how many 2's divide $(2^c)!$ and $(2^c - 1)!$, for every natural number c.

The former is $\lfloor 2^{c}/2 \rfloor + \lfloor 2^{c}/2^{2} \rfloor + \lfloor 2^{c}/2^{3} \rfloor + \dots = 2^{c-1} + 2^{c-2} + 2^{c-3} + \dots + 1 = 2^{c} - 1$. The latter is $\lfloor (2^{c}-1)/2 \rfloor + \lfloor (2^{c}-1)/2^{2} \rfloor + \lfloor (2^{c}-1)/2^{3} \rfloor + \dots = (2^{c-1}-1) + (2^{c-2}-1) + (2^{c-3}-1) + \dots + (1-1) = (2^{c-1} + 2^{c-2} + 2^{c-3} + \dots + 1) - c = 2^{c} - 1 - c$.

So, the number of 2's that divide $\frac{(2^{k+1}-1)!}{(2^k)!(2^k-1)!}$ is $(2^{k+1}-k-2)-(2^k-1)-(2^k-k-1)=0$. Since no 2's are left, the expression is odd for all k.

2. Prove that there exist infinitely many primes congruent to 3 (mod 4).

Suppose there were finitely many (say k) such primes; call them $p_1, p_2, \ldots p_k$. Set $N = 4p_1p_2 \cdots p_k - 1$, and consider the prime factorization $q_1q_2 \cdots q_j$ of N. Suppose that one of the q_1, \ldots, q_j (say q_1) is congruent to 3 (mod 4). Then it would be among the finite collection $\{p_1, \ldots, p_k\}$, and so $q_1|N, q_1|(N+1)$ and hence $q_1|gcd(N, N+1) = 1$, which is impossible since q_1 is prime. Hence each of the q's is congruent to 0, 1, or 2 (mod 4). But no product of these can equal 3 (mod 4), which contradicts the fact that N is congruent to 3 (mod 4).

There is a wonderful theorem of Dirichlet (first conjectured by Gauss) that if gcd(a, b) = 1, then there are infinitely many primes congruent to a (mod b). Further, if we add the reciprocals of these primes, that sum diverges. This theorem is very difficult to prove.

3. Exam grades: 104, 99, 87, 83, 78, 78, 75, 70, 69, 68, 68, 67, 53