Math 522 Exam 1 Solutions

1. Please write one hundred in eight ways: in base 8,9,10,11,12,13,14,15. If needed, use 'A' to represent the digit ten, 'B' for eleven, and so on.

BONUS: write one hundred in factoradic.

- 2. A nonempty set of integers J that fulfills the following two conditions is called an integral ideal:
 - (a) If n, m are in J, then n + m and n m are in J; and
 - (b) If n is in J and r is any integer, then rn is in J.

Further, for any integer m let $J_m = \{mk : k \in \mathbb{Z}\}$, the set of all integer multiples of m. You may assume that J_m is an integral ideal. Prove that every integral ideal J is, in fact, equal to J_m for some $m \in \mathbb{Z}$.

If J contains no positive elements, then it contains no negative elements either (if $x \in J$, with x negative, then $(-1)x \in J$ by (b), which would be a forbidden positive element) and therefore $J = \{0\}$ since J is nonempty. In this case, $J = J_0$.

Otherwise, J has at least one positive element, and therefore by the well-ordering of \mathbb{N} must have a minimal positive element, which we will call m. By (b), all integer multiples of m are in J, and hence $J_m \subseteq J$. It remains to show that $J \subseteq J_m$.

Suppose by way of contradiction that there is some $n \in J$ but $n \notin J_m$. Using the division algorithm, we divide n by m to get n = qm + r. We know that $n \in J$ (hypothesis), and $qm \in J$ (because $qm \in J_m$, and $J_m \subseteq J$), so by (a) we must have $r = n - qm \in J$. But the division algorithm guarantees that $0 \leq r < m$, which contradicts the fact that m is minimal and positive in J. Hence any element of J must also be in J_m , which proves $J \subseteq J_m$ and hence $J = J_m$.

If we replace \mathbb{Z} with another ring, we can still consider subsets J with the two properties above; they are called ideals and are very important in algebra. Ideals like J_m (generated by one element) are called principal ideals. In the integers, every ideal is principal; rings where this is true are called 'principal ideal domains', or PID's for short. $\mathbb{R}[x]$, the set of all polynomials with real coefficients, is a PID, but $\mathbb{Z}[x]$ and $\mathbb{R}[x, y]$ are not.

3. Exam grades: 101, 97, 90, 88, 80, 80, 80, 80, 79, 78, 78, 75, 75, 73, 69