Math 522 Exam 1 Solutions

1. Please write one hundred in eight ways: in base $8,9,10,11,12,13,14,15$. If needed, use ' A ' to represent the digit ten, ' B ' for eleven, and so on.
BONUS: write one hundred in factoradic.

$$
\begin{array}{rlll}
8: & 1 \cdot 64+4 \cdot 8+4=(144)_{8} & 12: 8 \cdot 12+4=(84)_{12} \\
9: & 1 \cdot 81+2 \cdot 9+1=(121)_{9} & 13: 7 \cdot 13+9=(79)_{13} \\
10: & 1 \cdot 100+0 \cdot 10+0=(100)_{10} & 14: 7 \cdot 14+2=(72)_{14} \\
11: & 9 \cdot 11+1=(91)_{11} & 15: & 6 \cdot 15+10=(6 A)_{15}
\end{array}
$$

$$
\text { Factoradic: } 4 \cdot 24+0 \cdot 6+2 \cdot 2+0 \cdot 1=(4020)!
$$

2. A nonempty set of integers J that fulfills the following two conditions is called an integral ideal:
(a) If n, m are in J, then $n+m$ and $n-m$ are in J; and
(b) If n is in J and r is any integer, then $r n$ is in J.

Further, for any integer m let $J_{m}=\{m k: k \in \mathbb{Z}\}$, the set of all integer multiples of m. You may assume that J_{m} is an integral ideal. Prove that every integral ideal J is, in fact, equal to J_{m} for some $m \in \mathbb{Z}$.
If J contains no positive elements, then it contains no negative elements either (if $x \in J$, with x negative, then $(-1) x \in J$ by (b), which would be a forbidden positive element) and therefore $J=\{0\}$ since J is nonempty. In this case, $J=J_{0}$.
Otherwise, J has at least one positive element, and therefore by the well-ordering of \mathbb{N} must have a minimal positive element, which we will call m. By (b), all integer multiples of m are in J, and hence $J_{m} \subseteq J$. It remains to show that $J \subseteq J_{m}$.
Suppose by way of contradiction that there is some $n \in J$ but $n \notin J_{m}$. Using the division algorithm, we divide n by m to get $n=q m+r$. We know that $n \in J$ (hypothesis), and $q m \in J$ (because $q m \in J_{m}$, and $J_{m} \subseteq J$), so by (a) we must have $r=n-q m \in J$. But the division algorithm guarantees that $0 \leq r<m$, which contradicts the fact that m is minimal and positive in J. Hence any element of J must also be in J_{m}, which proves $J \subseteq J_{m}$ and hence $J=J_{m}$.

If we replace \mathbb{Z} with another ring, we can still consider subsets J with the two properties above; they are called ideals and are very important in algebra. Ideals like J_{m} (generated by one element) are called principal ideals. In the integers, every ideal is principal; rings where this is true are called 'principal ideal domains', or PID's for short. $\mathbb{R}[x]$, the set of all polynomials with real coefficients, is a PID, but $\mathbb{Z}[x]$ and $\mathbb{R}[x, y]$ are not.
3. Exam grades: 101, 97, 90, 88, 80, 80, 80, 80, 79, 78, 78, 75, 75, 73, 69

