1. For nonzero polynomial \(f(x) = a_nx^n + \cdots + a_1x + a_0 \in \mathbb{Z}[x] \), define the **content** of \(f(x) \) as \(c(f) = \gcd(a_n, a_{n-1}, \ldots, a_1, a_0) \). We call \(f \) primitive if \(c(f) = 1 \). Let \(f(x), g(x) \in \mathbb{Z}[x] \). Suppose that \(f(x), g(x) \) are both primitive. Prove that their product \(f(x)g(x) \) is also primitive.

Since \(f, g \) are primitive, \(c(f) = c(g) = 1 \). Suppose, by way of contradiction, that \(c(fg) > 1 \). Then some prime \(p \) divides each coefficient of \(fg \). Now, \(p \) does not divide all the coefficients of \(f \); suppose \(k \) is minimal so that \(p \nmid a_k \) (and hence \(p|a_0, p|a_1, \ldots, p|a_{k-1} \)). Set \(g(x) = b_nx^n + \cdots + b_0 \). Similarly, \(p \) does not divide all the coefficients of \(g \); suppose \(j \) is minimal so that \(p \nmid b_j \) (and hence \(p|b_0, p|b_1, \ldots, p|b_{j-1} \)). The coefficient of \(x^{k+j} \) in \(fg \) is \(b_0a_{k+j} + b_1a_{k+j-1} + \cdots + b_{j-1}a_{k+1} + b_ja_k + b_{j+1}a_{k-1} + \cdots + b_{k+j}a_0 \). All the terms to the left of \(b_ja_k \) are multiples of \(p \), because \(b_0, \ldots, b_{j-1} \) are. All the terms to the right of \(b_ja_k \) are multiples of \(p \), because \(a_0, \ldots, a_{k-1} \) are. But \(b_ja_k \) is not a multiple of \(p \), so the entire sum is not a multiple of \(p \). But \(p \) divides every coefficient of \(fg \), so we have a contradiction.

2. For nonzero \(f(x), g(x) \in \mathbb{Z}[x] \), prove that \(c(fg) = c(f)c(g) \).

We have \(f(x) = c(f)f'(x), g(x) = c(g)g'(x) \), where \(f'(x) \) and \(g'(x) \) have content 1. Now \(f(x)g(x) = [c(f)c(g)]f'(x)g'(x) \). We take the content of the product, finding \(c(fg) = c(f)c(g)c(f'g') \). By Problem 1 above, \(c(f'g') = 1 \), so \(c(fg) = c(f)c(g) \).

3. Let \(f(x) \in \mathbb{Z}[x] \). Suppose that there are non-units \(g(x), h(x) \in \mathbb{Q}[x] \) such that \(f(x) = g(x)h(x) \). Then there are \(g'(x), h'(x) \in \mathbb{Z}[x] \) such that \(f(x) = g'(x)h'(x) \) and \(\text{deg } g(x) = \text{deg } h'(x) \) (and also \(\text{deg } h(x) = \text{deg } h'(x) \)).

Let \(a \) be the lcm of the denominators of the coefficients of \(g \), and \(b \) the lcm of the denominators of the coefficients of \(h \). Now, \(abf(x), ag(x), bh(x) \in \mathbb{Z}[x] \) with \(abf = (ag)(bh) \). By problem 2, \(c(abf(x)) = c(ag(x))c(bh(x)) \). But \(ab \) divides each coefficient of \(abf(x) \), so \(c(abf(x)) = c(f(x))ab \). Hence \(ab|c(ag(x))c(bh(x)) \). By the lemma below, we can write \(ab = uv \) such that \(u|c(ag(x)) \) and \(v|c(bh(x)) \). Because \(u|c(ag(x)) \), \(u \) divides each coefficient of \(ag(x) \), so we set \(g'(x) = \frac{ag(x)}{\text{deg } g'(x)} \), \(h'(x) = \frac{bh(x)}{\text{deg } h'(x)} \).

Lemma: Let \(a, b, c \in \mathbb{Z} \) with \(ab|c \). There are \(a', a'' \in \mathbb{Z} \) such that \(a = a'a'', a'|b, \) and \(a''|c \).

Proof: Use Fundamental Theorem of Arithmetic to write \(a = p_1^{a_1} \cdots p_k^{a_k}, b = p_1^{b_1} \cdots p_k^{b_k}, c = p_1^{c_1} \cdots p_k^{c_k} \). Because \(ab|c \), we have \(a_i \leq b_i + c_i \) for each \(i \in [1, k] \). Now, set \(d_i = \min\{b_i, a_i\} \) and \(f_i = a_i - d_i \). Using these, we define \(a' = p_1^{d_1} \cdots p_k^{d_k} \) and \(a'' = p_1^{f_1} \cdots p_k^{f_k} \). We have \(d_i + f_i = a_i \) so \(a = a'a'' \). By definition of \(d_i, d_i \leq b_i, \) so \(a'|b \). But also \(f_i \leq c_i \) so \(a''|c \).

4. Fix \(a \in \mathbb{Z} \) and consider \(\phi_a : \mathbb{Z}[x] \to \mathbb{Z}[x] \) given by \(\phi_a : f(x) \mapsto f(x - a) \). Prove that if \(f(x) \) is reducible then \(\phi_a(f(x)) \) is reducible.

If \(f(x) \) is reducible then it is not the zero polynomial, and there are nonunit \(g(x), h(x) \in \mathbb{Z}[x] \) such that \(f(x) = g(x)h(x) \). We have \(\phi_a(f(x)) = \phi_a(g(x)h(x)) = \phi_a(g(x))\phi_a(h(x)) = g(x - a)h(x - a) \). Now, if \(g(x) \) is a constant, then \(g(x - a) = g(x) \), so \(g(x - a) \) is still reducible.
not a unit. If instead \(g(x) \) is a non-constant polynomial, then \(g(x - a) \) is also a non-constant polynomial of the same degree, so again is not a unit. Similarly, \(h(x - a) \) is not a unit, so \(\phi_a(f(x)) \) is reducible.

5. Use Eisenstein’s criterion (and Problem 4, if necessary) to prove that \(x^5 + 5x + 2 \) is irreducible in \(\mathbb{Q}[x] \).

Set \(f(x) = x^5 + 5x + 2 \), and consider instead \(f(x + 3) = x^5 + 15x^4 + 90x^3 + 270x^2 + 410x + 260 \). Note that 5 divides each of 15, 90, 270, 410, 260, but \(5 \nmid 1 \) and \(5^2 \nmid 260 \). Hence, by Eisenstein’s criterion, \(f(x + 3) \) is irreducible. By Problem 4, since \(f(x + 3) = \phi_3(f(x)) \), also \(f(x) \) must be irreducible.

You could also consider \(f(x - 2) = x^5 - 10x^4 + 40x^3 - 80x^2 + 85x - 40 \), also with 5.

6. Fix \(p \) prime, and consider the “natural map” \(\phi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x] \) given by \(\phi_p : a_nx^n + \cdots + a_1x + a_0 \mapsto [a_n]_p x^n + \cdots + [a_1]_p x + [a_0]_p \). Prove that if \(p \nmid a_n \) and \(f(x) \) is primitive and reducible, then \(\phi_p(f(x)) \) is also reducible.

Since \(f \) is reducible, there are \(g(x), h(x) \in \mathbb{Z}[x] \) with \(f(x) = g(x)h(x) \). Since \(f \) is primitive, neither \(g \) nor \(h \) are constants. Neither of the leading coefficients of \(g, h \) are multiples of \(p \), since the leading coefficient of \(f \)’s not. Hence \(\deg(\phi_p(g)) = \deg(g) > 0 \) and similarly \(\deg(\phi_p(h)) = \deg(h) > 0 \). Hence \(\phi_p(f) = \phi_p(g)\phi_p(h) \), a product of nonunits.

7. Use Problem 6 to prove that \(f(x) = x^3 + 5x + 4 \) is irreducible in \(\mathbb{Z}[x] \).

Taking \(p = 3 \), we get \(\phi_3(f) = x^3 + 2x + 1 \). Plugging in 0, 1, 2, we get 1 each time (in \(\mathbb{Z}_3 \)). Hence \(\phi_3(f) \) is irreducible in \(\mathbb{Z}_3[x] \). Since \(f(x) \) is primitive and 3 does not divide the leading coefficient, \(f(x) \) is irreducible in \(\mathbb{Z}[x] \).

8. Set \(f(x) = 3x^3 + 4x^2 + 7x + 2 \). Show that this is reducible in \(\mathbb{Z}[x] \) but irreducible in \(\mathbb{Z}_3[x] \). Does this contradict problem 6?

We have \(f(x) = (3x + 1)(x^2 + x + 2) \) in \(\mathbb{Z}[x] \), so \(f \) is reducible over \(\mathbb{Z} \). However \((3x + 1) \) is a unit in \(\mathbb{Z}_3[x] \), so this does not prove \(\phi_3(f) \) is reducible. In fact, \(f(0) = 2, f(1) = 1, f(2) = 2 \). Hence \(f(x) \) has no linear factor in \(\mathbb{Z}_3[x] \). Since \(\deg(f) = 2 \) in \(\mathbb{Z}_3[x] \), it is irreducible. Problem 6 doesn’t apply since \(p = 3 \) divides the leading coefficient of \(f \).

9. Factor \(x^4 - 25 \) in \(\mathbb{Q}[x], \mathbb{R}[x], \) and \(\mathbb{C}[x] \).

Over \(\mathbb{Q} \), this factors as \((x^2 - 5)(x^2 + 5)\), two irreducibles (verified by Eisenstein’s criterion with \(p = 5 \)). Over \(\mathbb{R} \), this factors as \((x - \sqrt{5})(x + \sqrt{5})(x^2 + 5)\), three irreducibles (verified by discriminant \(b^2 - 4ac = -20 < 0 \)). Over \(\mathbb{C} \), this factors as \((x - \sqrt{5})(x + \sqrt{5})(x - \sqrt{5}i)(x + \sqrt{5}i)\), four irreducibles.

10. Factor \(x^3 - ix^2 + 5x - 5i \) in \(\mathbb{C}[x] \).

Trial and error, and long division in \(\mathbb{C}[x] \) is what’s needed here. Luckily \(i \) is a root, so we can divide by \((x - i)\) to get \(x^2 + 5 \). Hence the polynomial factors as \((x - i)(x - \sqrt{5}i)(x + \sqrt{5}i)\).