1. Let \(R, S, T \) be rings, with \(S, T \) both subrings of \(R \). Suppose that \(S \) has the special property that for every \(s \in S \) and every \(r \in R \), we have both \(sr \in S \) and \(rs \in S \). Set \(S + T = \{ s + t : s \in S, t \in T \} \), a subset of \(R \). Prove that \(S + T \) is a subring of \(R \). [This is really a Chapter 3 question.]

2. Consider the polynomial ring \(\mathbb{Z}_9[x] \), and the nine elements \{3\(x \) + 0, 3\(x \) + 1, \ldots , 3\(x \) + 8\}. Determine which are units and which are zero divisors.

3. Consider the polynomial ring \(\mathbb{Z}_9[x] \), and the nine elements \{0\(x \) + 3, 1\(x \) + 3, \ldots , 8\(x \) + 3\}. Determine which are units and which are zero divisors.

4. Let \(R \) be a ring, and \(k \in \mathbb{N} \). Define \(x^k R[x] = \{ x^k f(x) : f(x) \in R[x] \} \). Prove that \(x^k R[x] \) is a subring of \(R[x] \).

5. Let \(F \) be a field. Determine explicitly which elements of \(F[x] \) are in the subring \(x^3 F[x] + x^5 F[x] \). (refer to exercises 1,4)

6. Working in \(\mathbb{Q}[x] \), find \(\gcd(a(x), b(x)) \), for \(a(x) = x^3 + x^2 + x + 1, \ b(x) = x^4 - 2x^2 - 3x - 2 \).

7. Working in \(\mathbb{Z}_2[x] \), find \(\gcd(a(x), b(x)) \), for \(a(x) = x^3 + x^2 + x + 1, \ b(x) = x^4 - 2x^2 - 3x - 2 \).

8. Working in \(\mathbb{Z}_5[x] \), find \(\gcd(a(x), b(x)) \), for \(a(x) = x^3 + x^2 + x + 1, \ b(x) = x^4 - 2x^2 - 3x - 2 \).

9. Working in \(\mathbb{Q}[x] \), let \(a(x) = x^2 - 5x + 6, \ b(x) = x^3 - x^2 - 2x \). Find \(u(x), v(x) \) such that \(\gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x) \).

10. Working in \(\mathbb{Z}_3[x] \), let \(a(x) = x^2 - 5x + 6, \ b(x) = x^3 - x^2 - 2x \). Find \(u(x), v(x) \) such that \(\gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x) \).