1. Let \(a, b \in \mathbb{N} \), and set \(d = \gcd(a, b) \). Prove that \(\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1 \).

2. Let \(a, b, c \in \mathbb{Z} \). Consider the following equation (in variables \(x, y \)):
 \[
 ax + by = c
 \]
 Prove that this equation has integer solutions, if and only if \(\gcd(a, b)|c \).

3. Use the Generalized Euclidean Algorithm to find \(\gcd(196, 308) \) and also to find integers \(x, y \) satisfying \(196x + 308y = \gcd(196, 308) \).

4. Let \(a, b \in \mathbb{N} \). Prove that the Euclidean Algorithm will find \(\gcd(a, b) \) in at most \(\min(a, b) \) steps.

5. Find all primes between 1025 and 1075.

6. Let \(a, b, n \in \mathbb{N} \). Prove that \(a|b \) if and only if \(a^n|b^n \).

7. Let \(n, k \in \mathbb{N} \) and let \(p \in \mathbb{N} \) be prime. Prove that if \(p|n^k \) then \(p^k|n^k \).

8. Let \(n \in \mathbb{N} \). Prove that \(n \) has an odd number of positive factors, if and only if, \(n \) is a perfect square.

9. Use the Miller-Rabin test on \(n = 69 \). Either find a witness to its compositeness, or else three potential liars.

10. Use the Miller-Rabin test on \(n = 66683 \). Either find a witness to its compositeness, or else three potential liars.