1. Factor \(f(x) = x^4 + 3x^3 - x^2 + 3x + 1 \) into irreducibles in \(\mathbb{Z}_5[x] \).

We first look for any linear factors, by computing \(f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 3, f(-1) = 0 \). Hence \((x + 1)\) is a (possibly multiple) factor of \(f(x) \). We now calculate \(f(x) = (x+1)(x^3+2x^2+2x+1) \). It turns out that \(-1\) is a root of \(x^3+2x^2+2x+1 \), so we divide again to get \(f(x) = (x+1)^2(x^2+x+1) \). Now \(-1\) is not a root of \(x^2+x+1 \); hence \(x^2+x+1 \) has no roots. Since it is of degree 2, it is irreducible and we are done.

2. Prove that \(f(x) = x^3 + 9x^2 + 8x + 96301 \) is irreducible in \(\mathbb{Q}[x] \).

Eisenstein’s criterion is not appealing, as 96301 is hard to factor (it equals \(23 \cdot 53 \cdot 79 \), so to use Eisenstein we would need to test 16 values).

By Gauss’ Lemma, \(f(x) \) is irreducible in \(\mathbb{Q}[x] \) if it is irreducible in \(\mathbb{Z}[x] \). By homework 8 problem 6, \(f(x) \) is irreducible in \(\mathbb{Z}[x] \) if it is irreducible in \(\mathbb{Z}_3[x] \). Working in \(\mathbb{Z}_3 \), we have \(f(x) = x^3 + 2x + 1 \). We check \(f(0) = 1, f(1) = 1, f(-1) = 1 \). Hence \(f(x) \) has no linear factors over \(\mathbb{Z}_3 \), but since it is of degree 3 it is irreducible.

3. Let \(R \) be an integral domain. Prove that all linear polynomials in \(R[x] \) are irreducible, if and only if \(R \) is a field.

Let \(f(x) = ax + b \), for \(a, b \in R \). If \(f(x) = g(x)h(x) \), then (since \(R \) is an integral domain), one of \(g, h \) must be of degree 0. If \(R \) is a field, this is a unit, so \(f(x) \) is irreducible. On the other hand, if \(R \) is not a field, there is some \(c \in R \) that is not zero and not a unit. We take \(f(x) = cx + c = c(x + 1) \), a factorization into two nonunits. Hence \(f(x) \) is reducible.

4. Set \(f(x) = x^4 + 3x^3 - x^2 + x - 1, g(x) = 2x^5 + 3x^4 + 3x^2 + 2x - 1 \), both in \(\mathbb{Z}_5[x] \). Use the extended Euclidean algorithm to find \(\gcd(f, g) \) and to find polynomials \(a(x), b(x) \) such that \(\gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x) \).

\[
2x^5 + 3x^4 + 3x^2 + 2x - 1 = (2x + 2)(x^4 + 3x^3 - x^2 + x - 1) + (x^3 + 3x^2 + 2x + 1)
\]
\[
x^4 + 3x^3 - x^2 + x - 1 = (x)(x^2 + 3x^2 + 2x + 1) + (2x^2 - 1)
\]
\[
x^3 + 3x^2 + 2x + 1 = (3x - 1)(2x^2 - 1) + 0
\]

Hence \(\gcd(f, g) \) is the monic multiple of \(2x^2 - 1 \), which is \(3(2x^2 - 1) = x^2 + 2 \). We now back-substitute, as \(2x^2 - 1 = (x^4 + 3x^3 - x^2 + x - 1) - x(2x^5 + 3x^4 + 3x^2 + 2x - 1) - (2x + 2)(x^4 + 3x^3 - x^2 + x - 1) = (x^4 + 3x^3 - x^2 + x - 1)(1 + x(2x + 2)) + (2x^5 + 3x^4 + 3x^2 + 2x - 1)(-x) \). We multiply both sides by the unit 3, to get \(x^2 + 2 = (x^4 + 3x^3 - x^2 + x - 1)3(1 + x(2x + 2)) + (2x^5 + 3x^4 + 3x^2 + 2x - 1)3(-x) \). Hence \(a(x) = x^2 + x + 3, b(x) = 2x \).

5. Set \(f(x) = x^n - x^{n-1} \in F[x] \). Carefully find all divisors of \(f(x) \) in \(F[x] \).

We factor \(f(x) \) into irreducibles as \(f(x) = (x - 1)x^{n-1} \). Because \(F[x] \) has unique factorization, every divisor of \(f(x) \) must be of the form \(u(x - 1)x^j \), where \(u \) is a unit (i.e. any nonzero element of \(F \)), \(i \) satisfies \(0 \leq i \leq 1 \), and \(j \) satisfies \(0 \leq j \leq n - 1 \).
6. Let \(f(x), g(x), h(x) \in F[x] \). Suppose that \(f(x)|g(x)h(x) \) and \(\gcd(f(x), g(x)) = 1 \). Prove that \(f(x)|h(x) \).

We use the extended Euclidean algorithm to find \(a(x), b(x) \in F[x] \) such that \(1 = \gcd(f, g) = a(x)f(x)+b(x)g(x) \). Multiply both sides by \(h(x) \) to get \(h(x) = a(x)f(x)h(x) + b(x)g(x)h(x) \). Because \(f(x)|g(x)h(x) \), there is some \(c(x) \in F[x] \) such that \(g(x)h(x) = f(x)c(x) \). Substituting, we get \(h(x) = a(x)f(x)h(x) + b(x)f(x)c(x) = f(x)[a(x)h(x) + b(x)c(x)] \). Hence \(f(x)|h(x) \).

7. Let \(p \) be an odd prime. Prove there is at least one \(a \in \mathbb{Z}_p \) such that \(x^2 - a \) is irreducible in \(\mathbb{Z}_p[x] \).

Consider the function \(f : \mathbb{Z}_p \to \mathbb{Z}_p \) given by \(f : x \mapsto x^2 \). Note that \(f(1) = f(-1) = 1 \), so it is not injective (\(1 \neq -1 \) in \(\mathbb{Z}_p \) for odd \(p \)). Since its domain is the same as its codomain, and is finite, \(f \) is also not surjective. Hence there is some \(a \in \mathbb{Z}_p \) not in the range of \(f \). Take that for our \(a \). Now, \(x^2 - a \) will have no roots, since if \(b \) were a root then \(f(b) = b^2 = a \) (which is impossible). Since \(x^2 - a \) is quadratic polynomial with no roots, it is irreducible.

8. We call a polynomial in \(F[x] \) cinom if its constant coefficient is 1. Suppose that \(f(x) \) is a nonconstant, cinom, polynomial in \(F[x] \). Prove that we may write \(f(x) \) as the product of irreducible cinom polynomials.

By Theorem 4.14, we may write \(f(x) = f_1(x) \cdots f_k(x) \), the product of irreducible polynomials. The proof proceeds via induction on \(k \). If \(k = 1 \) then \(f(x) \) is itself irreducible and cinom, so it is the product of one irreducible cinom polynomial. Otherwise we write \(f(x) = f_1(x)g(x) \), where \(g(x) = f_2(x) \cdots f_k(x) \). Suppose that \(f_1(x) \) has constant coefficient \(a \), while \(g(x) \) has constant coefficient \(b \). Since \(f(x) \) is cinom, we know that \(ab = 1 \). Hence we can write \(f(x) = (bf_1(x))(ag(x)) \). Now, \(bf_1(x) \) has constant coefficient \(ba = 1 \), while \(ag(x) \) has constant coefficient \(ab = 1 \). So both factors are cinom. Since \(f_1(x) \) was irreducible, so is \(bf_1(x) \). Since \(ag(x) \) is cinom, nonconstant, and of degree smaller than \(f(x) \), we may apply the inductive hypothesis to write \(ag(x) \) as the product of irreducible cinom polynomials.