1. Find all irreducible polynomials of degree at most 3 in \(\mathbb{Z}_2[x] \).

All linear polynomials are irreducible, which in this case are \(x, x+1 \). We have \(x \cdot x = x^2, (x+1)(x+1) = x^2 + 1, x(x+1) = x^2 + x; \) these are reducible. Hence the only irreducible degree-2 polynomial is \(x^2 + x + 1 \). We have \(x^3 = x \cdot x^2, x^3 + 1 = (x^2 + x + 1)(x + 1), x^3 + x = x(x + 1)^2, x^3 + x^2 = x^2(x + 1), x^3 + x^2 + x = x(x^2 + x + 1), x^3 + x^2 + x + 1 = (x + 1)^3 \). This leaves two irreducible degree-3 polynomials: \(x^3 + x^2 + 1, x^3 + x + 1 \).

2. Express \(x^4 - 4 \) as a product of irreducibles in \(\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x], \mathbb{Z}_3[x] \).

\(\mathbb{Q}[x] \): \((x^2 - 2)(x^2 + 2) \), where each is irreducible because each is degree 2 and neither has a root in \(\mathbb{Q} \).

\(\mathbb{R}[x] \): \((x - \sqrt{2})(x + \sqrt{2})(x^2 + 2) \), where \(x^2 + 2 \) is irreducible since it has no root in \(\mathbb{R} \).

\(\mathbb{C}[x] \): \((x - \sqrt{2}i)(x + \sqrt{2}i)(x + \sqrt{2}i)(x - \sqrt{2}i) \). Finally the polynomial splits.

\(\mathbb{Z}_3[x] \): Write \(x^4 - 4 = x^4 - 1 = (x + 1)(x - 1)(x^2 + 1) \), where \(x^2 + 1 \) is irreducible since it is degree 2 and has no root in \(\mathbb{Z}_3 \).

3. Prove that \(x^3 - 2 \) is irreducible in \(\mathbb{Z}_7[x] \).

Note that, in \(\mathbb{Z}_7 \), \(0^3 = 0, 1^3 = 1, 2^3 = 1, 3^3 = 6, 4^3 = 1, 5^3 = 6, 6^3 = 6 \). Since none of these are 2, \(x^3 - 2 \) has no root; since it is of degree 3 it is therefore irreducible in \(\mathbb{Z}_7[x] \).

4. Find all roots of \(x^2 + 11 \) in \(\mathbb{Z}_{12}[x] \).

Note that, in \(\mathbb{Z}_{12} \), \(0^2 = 0, 1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 4, 5^2 = 1, 6^2 = 0, 7^2 = 1, 8^2 = 4, 9^2 = 9, 10^2 = 4, 11^2 = 1 \). Hence this degree-2 polynomial has FOUR roots: 1, 5, 7, 11. This can happen when your coefficients are drawn from a ring (not a field).

5. Express \(x^{11} - x \) as a product of irreducibles in \(\mathbb{Z}_{11}[x] \). Hint: FLT.

By Fermat’s Little Theorem, since 11 is prime, for all \(x \): \(x^{11} \equiv x \pmod{11} \). Hence this polynomial splits, i.e. has all linear factors. We have \(x^{11} - x = x(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6)(x - 7)(x - 8)(x - 9)(x - 10) \).

Note: this same method can be used to prove Wilson’s theorem. Look at the coefficient of \(x \) on both sides; on the left it is \(-1 \), while on the right it is \((-1)(-2) \cdots (-10) = (-1)^{10}10! = 10! \). Hence \(10! \equiv -1 \pmod{11} \).

6. Suppose \(F \subseteq K \) are both fields. Let \(f \in F[x] \subseteq K[x] \). Suppose that \(f \) is irreducible in \(K[x] \). Prove that \(f \) is also irreducible in \(F[x] \).

Suppose, by way of contradiction, that \(f \) is reducible in \(F[x] \). Then we may write \(f = gh \), where \(g, h \in F[x] \) are nonconstant polynomials. Since \(F \subseteq K \), also \(F[x] \subseteq K[x] \) so \(g, h \in K[x] \) and now \(f \) is reducible in \(K[x] \), a contradiction.

7. Suppose \(p(x) \) is irreducible in \(F[x] \), and \(a \in F \) is nonzero. Prove that \(ap(x) \) is also irreducible.

Suppose, by way of contradiction, that \(ap(x) \) is reducible in \(F[x] \). Then we may write \(ap(x) = g(x)h(x) \), where \(g, h \in F[x] \) are nonconstant polynomials. Since \(F \) is a field and
a is nonzero, there is some \(b \in F \) with \(ab = 1 \). Hence \(bap(x) = bg(x)h(x) \), and thus \(p(x) = (bg(x))h(x) \). Now, the leading coefficient of \(bg(x) \) has the same degree as the leading coefficient of \(g(x) \), since \(b \) is nonzero and \(F \) is an integral domain. Thus \(bg(x) \) and \(h(x) \) are both nonconstant polynomials whose product is \(p(x) \). Thus \(p(x) \) is reducible, a contradiction.

8. Let \(f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n \in F[x] \). Define \(\bar{f}(x) = a_n + a_{n-1}x + \cdots + a_1x^{n-1} + a_0x^n \in F[x] \). Suppose that \(c \neq 0 \) is a zero of \(f(x) \). Prove that \(c^{-1} \) is a zero of \(\bar{f}(x) \).

Since \(c \) is a zero of \(f(x) \), we have \(0 = f(c) = a_0 + a_1c + \cdots + a_{n-1}c^{n-1} + a_nc^n \). Multiply both sides by \((c^{-1})^n\) to get \(0 = a_0(c^{-1})^n + a_1c(c^{-1})^n + \cdots + a_{n-1}c^{n-1}(c^{-1})^n + a_nc^n(c^{-1})^n = a_0(c^{-1})^n + a_1(c^{-1})^{n-1} + \cdots + a_{n-1}(c^{-1}) + a_n = \bar{f}(c^{-1}) \).

9. Let \(a \in F \) and define \(\phi_a : F[x] \to F \) via \(\phi_a : f(x) \mapsto f(a) \). Prove that \(\phi_a \) is a surjective (ring) homomorphism.

We first prove \(\phi_a \) is a homomorphism. \(\phi_a(f + g) = (f + g)(a) = f(a) + g(a) = \phi_a(f) + \phi_a(g) \), and \(\phi_a(fg) = (fg)(a) = f(a)g(a) = \phi_a(f)\phi_a(g) \). To prove \(\phi_a \) surjective, let \(c \in F \). Take \(f(x) = c \), the constant polynomial. We have \(\phi_a(f) = c \).

10. Define \(\mathbb{Q}[^2] = \{ r_0 + r_1\sqrt{2} + r_2(\sqrt{2})^2 + \cdots + r_n(\sqrt{2})^n : n \geq 0, r_i \in \mathbb{Q} \} \). Note that this definition differs from our previous one for \(\mathbb{Q}[^2] \) (although they can be proved equivalent). Consider the function \(\phi : \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}] \) via \(\phi : f(x) \mapsto f(\sqrt{2}) \). Prove that \(\phi \) is a (ring) homomorphism, is surjective, and is not injective.

Let \(f(x) = \sum_{n \geq 0} a_nx^n, g(x) = \sum_{n \geq 0} b_nx^n \) be arbitrary polynomials in \(\mathbb{Q}[x] \), both finite sums. We have \(\phi(f + g) = \phi(\sum_{n \geq 0}(a_n + b_n)x^n) = \sum_{n \geq 0}(a_n + b_n)\sqrt{2}^n = \sum_{n \geq 0}a_n\sqrt{2}^n + \sum_{n \geq 0}b_n\sqrt{2}^n = \phi(f) + \phi(g) \). Setting \(\epsilon_n = \sum_{i=0}^n a_ib_{n-i} \), we have \(\phi(fg) = \phi(\sum_{n \geq 0} \epsilon_nx^n) = \sum_{n \geq 0} \epsilon_n\sqrt{2}^n = \left(\sum_{n \geq 0} a_n\sqrt{2}^n \right) \left(\sum_{n \geq 0} b_n\sqrt{2}^n \right) = \phi(f)\phi(g) \). Hence \(\phi \) is a homomorphism.

Given an arbitrary \(r = \sum_{n \geq 0} r_n\sqrt{2}^n \in \mathbb{Q}[^2] \), we set \(f(x) = \sum_{n \geq 0} r_nx^n \) (taking \(r_i = 0 \) for \(i > n \)), and have \(\phi(f) = r \). Hence \(\phi \) is surjective.

Lastly, we note that \(\phi(2) = \phi(x^2) = 2 \), so \(\phi \) is not injective.