1. Write the $⊕$-addition and $⊙$-multiplication tables of \mathbb{Z}_{10}.

2. For \mathbb{Z}_{10}, find the neutral additive element1, the neutral multiplicative element2, and all zero divisors3.

3. Find the units of \mathbb{Z}_{10}; for each unit specify its inverse.

4. The *additive order* of an element in \mathbb{Z}_{10} is the number of times one must $⊕$-add it to itself to get $[0]$. Determine the additive order of each element of \mathbb{Z}_{10}.

We define $\mathbb{Z}_2 \times \mathbb{Z}_5 = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_5\}$, the set of ordered pairs of elements, one each from \mathbb{Z}_2 and \mathbb{Z}_5. We define operations in the natural way, i.e. componentwise:

$$(a, b) ⊕ (a', b') = (a ⊕_2 a', b ⊕_5 b') \quad \text{and} \quad (a, b) ⊙ (a', b') = (a ⊙_2 a', b ⊙_5 b')$$

5. Write the $⊕$-addition and $⊙$-multiplication tables of $\mathbb{Z}_2 \times \mathbb{Z}_5$.

6. For $\mathbb{Z}_2 \times \mathbb{Z}_5$, find the neutral additive element, the neutral multiplicative element, and all zero divisors.

7. Find the units of $\mathbb{Z}_2 \times \mathbb{Z}_5$; for each unit specify its inverse.

8. Determine the additive order of each element of $\mathbb{Z}_2 \times \mathbb{Z}_5$.

9. Compare the two rings \mathbb{Z}_{10} and $\mathbb{Z}_2 \times \mathbb{Z}_5$ as best you can (we will learn tools to do this better, later in the course).

1This is an element x, such that $x ⊕ y = y ⊕ x = y$ for all y.

2This is an element x, such that $x ⊙ y = y ⊙ x = y$ for all y.

3This is a nonzero element x, such that there is some nonzero y with $x ⊙ y = 0$.