MATH 521A: Abstract Algebra
Preparation for Exam 1

1. Use induction to prove that \(n^3 < n! \) for all \(n \geq 6 \).

2. Let \(m \in \mathbb{N} \). Use the division algorithm to prove that there is no integer \(n \) with \(m < n < m + 1 \).

3. Let \(a, b, n \in \mathbb{Z} \) with \(n > 1 \). Suppose we apply the division algorithm three times to get \(a = q_1 n + 1 \), \(b = q_2 n + r_2 \), \(ab = q_3 n + r_3 \). Prove that \(r_2 = r_3 \).

4. Let \(S \) be a set with a well-ordering \(< \), and for each \(x \in S \) the proposition \(P(x) \) may be true or false. Suppose that \(c \in S \) is the smallest counterexample, i.e. \(P(c) \) is false, but for all \(x \in S \) with \(x < c \), \(P(x) \) is true. Suppose that with these hypotheses we are able to derive a contradiction. Prove that \(P(x) \) holds for all \(x \in S \), using the well-ordering of \(S \).

5. Prove that \(5 \mid (3^{2n} - 2^{2n}) \) for all \(n \in \mathbb{N} \).

6. Use the Euclidean Algorithm to find \(\gcd(1492, 1776) \) and to express that \(\gcd \) as a linear combination of \(1492, 1776 \).

7. Suppose \(a, b, q, r \in \mathbb{Z} \) with \(b > 0 \) and \(a = bq + r \). Prove that \(\gcd(a, b) = \gcd(b, r) \).

8. Let \(a, b, c \in \mathbb{Z} \) with \(a \neq 0 \). Suppose \(a \mid bc \). Prove that \(a \mid \gcd(a, b)c \).

9. Let \(a, b \in \mathbb{N} \). Suppose that \(\gcd(a, b) = 1 \). Without using the FTA, prove that \(\gcd(a^2, b^2) = 1 \).

10. Express 7,938,000 as a product of primes.

11. Let \(p \) be a positive prime, \(n \in \mathbb{Z} \) with \(n > 1 \). Use the Fundamental Theorem of Arithmetic to prove that there do not exist \(a, b \in \mathbb{N} \) with \(a^n = pb^n \). [Note: this proves that \(\sqrt{p} \notin \mathbb{Q} \).]

12. Let \(a, x, y, n \in \mathbb{N} \) with \(\gcd(a, n) = 1 \). Suppose \(ax \equiv ay \pmod{n} \). Prove that \(x \equiv y \pmod{n} \).

13. Let \(a, b, n \in \mathbb{N} \) with \(\gcd(a, n) = 1 \). Prove that \(ax \equiv b \pmod{n} \) has a solution \(x \). Also, prove that any two solutions are congruent modulo \(n \).

14. Suppose \(a, b, m, n \in \mathbb{N} \) and \(\gcd(m, n) = 1 \). Prove that the system \(\{x \equiv a \pmod{m}, x \equiv b \pmod{n}\} \) has a solution \(x \). Also, prove that any two solutions are congruent modulo \(mn \).

15. Prove that any natural number is congruent to its units digit, modulo 10.

16. Prove that \(n^3 \equiv n \pmod{6} \), for all \(n \in \mathbb{N} \).

17. Working in \(\mathbb{Z}_{27} \), find the multiplicative inverse of \([8]\), and use this to solve the modular equation \([8] \odot [x] = [15] \).

18. Working in \(\mathbb{Z}_n \), prove that the following holds for all \(a, b, c, d \):

\[
([a] \oplus [b]) \odot ([c] \oplus [d]) = ([a] \odot [c]) \oplus ([a] \odot [d]) \oplus ([b] \odot [c]) \oplus ([b] \odot [d])
\]

19. Let \([a] \in \mathbb{Z}_n \). Prove that exactly one of the following holds:

(i) \([a] = [0] \); or
(ii) \([a] \) is a unit; or
(iii) \([a] \) is a zero divisor.

20. Let \(n \in \mathbb{Z} \) with \(n > 1 \). Prove that \(n \) is prime if and only if there are no zero divisors in \(\mathbb{Z}_n \).