Math 254 Fall 2012 Exam 5 Solutions

1. Carefully state the definition of "independent". Give two examples from $P_{2}(t)$.

A set of vectors is independent if every nondegenerate linear combination yields a nonzero vector. Many examples are possible, such as $\{1\},\{1, t\},\{1+$ $t, 1-t\},\left\{1, t, t^{2}\right\}$. All correct examples are, among other things, sets of polynomials in t.
2. Let S be the set of all symmetric 2×2 matrices; it turns out that S is a subspace of $M_{2,2}(\mathbb{R})$. Find the dimension of S, and a basis for S.
S is not all of $M_{2,2}(\mathbb{R})$, since not every matrix is symmetric, so $\operatorname{dim}(S)$ is at most 3. If we can find a set of three elements of S that are independent, then that will prove S has dimension at least 3 , hence exactly 3 (and this set will also be a basis of S. Many such sets are possible; the simplest is $\{\bar{u}, \bar{v}, \bar{w}\}$, for $\bar{u}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \bar{v}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], \bar{w}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. To prove this is independent, suppose linear combination $a \bar{u}+b \bar{v}+c \bar{w}=\left[\begin{array}{cc}a & c \\ c & b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$; but then $a=b=c=0$.

The last three problems all concern $A=\left[\begin{array}{cccc}1 & -3 & 0 & 4 \\ 2 & 0 & 6 & 3 \\ 3 & 1 & 10 & 2 \\ 4 & -7 & 5 & 1\end{array}\right]$, which is row equivalent to $B=\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
3. What can you conclude about $\operatorname{Span}(\{(1,-3,0,4),(2,0,6,3),(3,1,10,2),(4,-7,5,1)\})$?

This vector space is the rowspace of A, which coincides with the rowspace of B. Hence, a basis for this vector space is $\{(1,0,3,0),(0,1,1,0),(0,0,0,1)\}$. In particular, this space is three-dimensional.
4. What can you conclude about $\operatorname{Span}(\{(1,2,3,4),(-3,0,1,-7),(0,6,10,5),(4,3,2,1)\})$?

This vector space is the columnspace of $A . B$ has pivots in the first, second, and fourth columns. Hence the first, second, and fourth elements of this set form a basis for this vector space, namely $\{(1,2,3,4),(-3,0,1,-7),(4,3,2,1)\}$. In particular, this space is three-dimensional.
5. Find a basis for the solution space of the homogeneous system of equations $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=0$.

The solution space will be one-dimensional, hence its basis will consist of a single vector. The solution space has x_{3} free, and $x_{1}=-3 x_{3}, x_{2}=-x_{3}, x_{4}=$ 0 . Hence a basis is $\{(-3,-1,1,0)\}$. Other solutions are possible, but they will all be multiples of this, e.g. $\{(6,2,-2,0)\}$.

