Math 254 Exam 4 Solutions

1. Carefully state the definition of “subspace”. Give two examples, each from \(\mathbb{R}^2 \).

 A subspace is a subset of a vector space that is, itself, a vector space. Many examples are possible, such as \(\{(0, 0)\} \) (zero-dimensional), Span\(\langle S \rangle \) for \(S = \{(1, 2)\} \) (one-dimensional), or \(\mathbb{R}^2 \) itself (two-dimensional).

2. Carefully state any five of the eight vector space axioms.

 These are listed on p.152 of the text. It is not important how you number them; however it is important that you give the English text correctly. “For any vectors \(u, v, w \) in \(V \), \((u + v) + w = u + (v + w) \)” is correct, but the equation “\((u + v) + w = u + (v + w) \)” alone is incorrect.

3. Let \(S = \{ f(x) : f(3) = 1 \} \subseteq \mathbb{R}[x] \) be the set of all polynomials \(f(x) \) satisfying \(f(3) = 1 \). Determine, with justification, whether this is a vector space.

 Since \(S \) is a subset of a vector space, to be a subspace \(S \) must satisfy three properties. It must contain the zero vector, it must be closed under vector addition, and closed under scalar multiplication. \(S \) satisfies none of these three properties, and it’s enough to pick your favorite to disprove. Just for fun, I will disprove all three: (1) \(f(x) = 0 \) does not satisfy \(f(3) = 1 \), so \(0 \) is not in \(S \); (2) \(f(x) = 1 \) and \(g(x) = x/3 \) are both in \(S \), but \((f + g)(x) = 1 + x/3 \) is not in \(S \) since \((f + g)(3) = 2 \); (3) \(f(x) = 1 \) is in \(S \) but \(5f(x) = 5 \) is not in \(S \).

4. Determine, with justification, whether \((1, 2) \) is in the rowspace of \(M = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix} \).

 The rowspace of \(M \) is also the rowspace of \(\begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \), obtained via \(R_2 = R_2 - 3R_1 \), which is Span\(\langle (2, 3) \rangle = \{ t(2, 3) : t \in \mathbb{R} \} \). If \((1, 2) \) were in this subspace, then for some \(t \) we would have \((1, 2) = (2t, 3t) \), and hence \(2t = 1 \) and \(3t = 2 \). This is impossible, so the answer is “no”.

5. Set \(V = \mathbb{R}^3 \). Give any two subspaces \(U_1, U_2 \) such that \(U_1 \oplus U_2 = V \).

 Two type of solutions are possible. The “trivial” solution is \(U_1 = \{(0, 0, 0)\}, U_2 = \mathbb{R}^3 \) (or the other way around). Otherwise, one of \(U_1, U_2 \) will be one-dimensional and the other will be two-dimensional. Many examples are possible, for example \(U_1 = \text{Span}(\{(1, 0, 0)\}) = \{(a, 0, 0) : a \in \mathbb{R} \}, U_2 = \text{Span}(\{(0, 1, 0), (0, 0, 1)\}) = \{(0, b, c) : b, c \in \mathbb{R} \} \). What is important is that \(U_1, U_2 \) are both subspaces of \(\mathbb{R}^3 \), that \(U_1 + U_2 = \mathbb{R}^3 \), and that \(U_1 \cap U_2 = \{0\} \).