1. Carefully state the definition of “basis”. Give two examples from \(\mathbb{R}^2 \).

A basis is a set of vectors that is both independent and spanning. Equivalently, a basis is a maximal set of independent vectors. Equivalently, a basis is a minimal set of spanning vectors. Many examples are possible, such as \(\{(1,0), (0,1)\} \) or \(\{(1,1), (2,3)\} \). All must contain exactly two, linearly independent, vectors.

Problems 2 and 3 both concern the matrix \(A = \begin{pmatrix} 2 & -4 & 6 & 0 & 4 \\ 1 & -2 & 3 & 0 & 2 \\ -1 & 2 & -3 & 1 & -1 \\ -2 & 4 & -6 & 2 & -2 \\ 3 & -6 & 9 & -3 & 3 \end{pmatrix} \).

2. Set \(S = \text{Rowspan}(A) \). Find a basis for \(S \), and determine its dimension.

The first two rows are two pivots, hence \(S \) is two dimensional. Many bases are possible; the natural one is the nonzero rows of the echelon matrix: \(\{(1,−2,3,0,2), (0,0,0,1,1)\} \). However any two independent elements of the rowspan would also work, such as two independent rows of \(A \) itself: \(\{(2,−4,6,0,4), (−1,2,−3,1,−1)\} \). The first two rows of \(A \) will NOT work, since they are dependent.

3. Set \(T = \text{Columnspan}(A) \). Find a basis for \(T \), and determine its dimension.

The rowspace and columnspan have the same dimension, hence \(T \) is two dimensional. The pivots of the row echelon form of \(A \) are in the first and fourth columns, hence the first and fourth columns of \(A \) form a basis for the columnspan: \(\{(2,1,−1,−2,3)^T, (0,0,1,2,−3)^T\} \). This is not the only basis; any two independent elements of the columnspan would also work.

Problems 4 and 5 both concern the vector spaces \(A = \text{Span}(\{(2,0,1), (1,−1,3)\}) \) and \(B = \text{Span}(\{(5,1,0), (0,4,−10)\}) \). Both are subspaces of \(\mathbb{R}^3 \).

4. Find a basis for \(A + B \), and determine its dimension.

We begin by putting the generating vectors in a matrix, then putting this matrix into echelon form: \(\begin{pmatrix} 2 & 1 & 5 & 0 \\ 0 & -1 & 1 & 4 \\ 1 & 3 & 0 & -10 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -5 & 5 & 20 \\ 0 & -1 & 1 & 4 \\ 1 & 3 & 0 & -10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & -10 \\ 0 & -1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \). This has two pivots, hence \(A + B \) is two dimensional. The pivots are in the first two columns, hence a basis is \(\{(2,0,1), (1,−1,3)\} \) (other bases are possible). Note: this solution has the matrix as \(3 \times 4 \), putting the vectors into columns. It is equally correct to put the vectors into rows, giving a \(4 \times 3 \) matrix.

5. Find a basis for \(A \cap B \), and determine its dimension.

\[
\text{dim}(A + B) + \text{dim}(A \cap B) = \text{dim}(A) + \text{dim}(B).
\]
We have \(\text{dim}(A) = \text{dim}(B) = \text{dim}(A + B) = 2 \), hence we can solve and determine \(\text{dim}(A \cap B) = 2 \). Hence \(A \cap B = A = B = A + B \), so a basis for \(A \cap B \) is any basis for \(A \) (or \(B \)), such as \(\{(2,0,1), (1,−1,3)\} \).