Math 254-2 Exam 4 Solutions

1. Carefully state the definition of “subspace”. Give two examples from \(\mathbb{R}^2 \).

 A subspace is a vector space, that is contained within another vector space. Many examples are possible from \(\mathbb{R}^2 \): \(\{0\} \), \(\mathbb{R}^2 \) itself, \(\text{Span}(v) \) for any vector \(v \) (in \(\mathbb{R}^2 \)), the solution set to any \(2 \times 2 \) homogeneous system of linear equations. Note that \(\mathbb{R}^1 \) is NOT a subspace, since none of its vectors are in \(\mathbb{R}^2 \).

2. Carefully state five of the eight vector space axioms.

 It is important not only to have the axioms right, but the quantifiers (for all vectors \(u, \(v $, etc.) You may find a list of the axioms on p.152 of the text. The names the book gives them (e.g. \(A_3 \)) are unimportant.

3. Let \(S = \{ f(x) : f(17) = 0 \} \subseteq \mathbb{R}[x] \) be the set of all polynomials that are zero at \(x = 17 \). Prove that this is a vector space.

 \(S \) is a nonempty subset of \(\mathbb{R}[x] \), so by Thm. 4.2 we need only check closure. If \(f, g \) are both in \(S \), then \(f(17) = g(17) = 0 \). \((f + g)(17) = f(17) + g(17) = 0 + 0 = 0 \), so \(f + g \) is in \(S \).

 Alternate proof: Instead of two steps, closure can be verified in one step. If \(f, g \) are both in \(S \), and \(a \) is any scalar, then \((cf)(17) = cf(17) = c0 = 0 \), so \(cf \) is in \(S \). \(S \) satisfies closure, hence is a subspace.

4. Determine, with justification, whether \((1, 1, 1)\) is in \(\text{Span}(S) \), for \(S = \{(1, 2, 1), (0, 3, 2), (2, 1, 0)\} \).

 The answer is yes, precisely when there are solutions to the linear system

 \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 3 & 1 \\
 1 & 2 & 0
 \end{bmatrix}
 \begin{bmatrix}
 a \\
 b \\
 c
 \end{bmatrix} =
 \begin{bmatrix}
 1 \\
 1 \\
 1
 \end{bmatrix}
 \]

 We solve this in the usual way, with the augmented matrix

 \[
 \begin{bmatrix}
 1 & 2 & 1 & 1 \\
 2 & 3 & 1 & 1 \\
 1 & 2 & 0 & 1
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 2 & 1 & 1 \\
 0 & 1 & -1 & 1/3 \\
 0 & 2 & -2 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & 2 & 1 \\
 0 & 1 & -1 & 1/3 \\
 0 & 0 & 0 & 2/3
 \end{bmatrix}
 \]

 The last equation is \(0 = 2/3 \), which has no solutions. Hence \((1, 1, 1)\) is NOT in \(\text{Span}(S) \).

 There is no linear combination of the elements of \(S \), that yields \((1, 1, 1)\).

5. Let \(W_1 = \text{Span}(S) \), for \(S = \{(1 \, 1 \, 1), (0 \, 0 \, 0)\} \). Let \(W_2 = \text{Span}(T) \), for \(T = \{(0 \, 0 \, 0), (0 \, 0 \, 0)\} \). Prove that \(W_1 \oplus W_2 = M_{2 \times 2}(\mathbb{R}) \) (the set of all \(2 \times 2 \) matrices).

 Note that \(W_1 = \{ w(1 \, 0 \, 0 \, 1) + x(0 \, 0 \, 0 \, 1) \} \) for \(\{ w(1 \, 0 \, 0 \, 1) \}, W_2 = \{ y(0 \, 0 \, 1 \, 0) + z(0 \, 0 \, 0 \, 0) \} = \{ (0 \, 0 \, 0 \, 0) \} \).

 Solution 1: We need to express every \(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \) uniquely as a sum of some vector from \(W_1 \) and some vector from \(W_2 \). We have \(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = w(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}) + x(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}) \) for \(w(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}), x(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}) \). The equations we get are \(w + y = a, w = b, x + z = c, x = d \). These equations have a unique solution, namely \(w = b, y = a - b, x = d, z = c - d \); hence \(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} b \\ b \\ c-d \\ 0 \end{bmatrix} + \begin{bmatrix} a-b \\ 0 \\ 0 \\ 0 \end{bmatrix} \), where the first matrix is in \(W_1 \) and the second is in \(W_2 \).

 Solution 2: We use Thm 4.11, which requires two things: (1) \(M_{2 \times 2} = W_1 + W_2 \), and (2) \(W_1 \cap W_2 = \{0\} \). To prove (1), we use the calculation from the first solution, although it is no longer important to have a unique decomposition. To prove (2), we need to find all matrices common to both \(W_1 \) and \(W_2 \). \(\begin{bmatrix} w \\ w \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \). The only solution is \(w = x = y = z = 0 \), hence \(W_1 \cap W_2 = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \} = \{0\} \).