1. Carefully state the definition of “spanning”. Give two examples for \(\mathbb{R}^2 \).

A set of vectors \(S \) is spanning if every vector in the vector space can be achieved through linear combinations of \(S \). Equivalently, \(S \) is spanning if \(\text{span}(S) \) is the whole vector space. Many examples are possible. Any basis, such as \(\{(1,0),(0,1)\} \), will work. But other examples are possible too, such as \(\{(1,1),(1,2),(1,3)\} \).

2. Let \(u = [1 \ 2 \ 3] \), and \(v = [0 \ 7 \ 15] \). For each of the following, determine what type they are (undefined, scalar, matrix/vector). If a matrix/vector, specify the dimensions.

DO NOT CALCULATE ANY NUMBERS.

(a) \(uu \) (b) \(uv^T \) (c) \(u^Tvu^T \) (d) \(u \times v \) (e) \((u \times v) \cdot u \)

\(u, v \) are \(1 \times 3 \); \(u^T, v^T \) are \(3 \times 1 \). Hence \(uu \) has pattern \((1 \times 3)(1 \times 3)(1 \times 3) \); neither matrix multiplication is possible, hence (a) is undefined. \(uv^T \) has \((1 \times 3)(3 \times 1)(1 \times 3) \); both matrix multiplications are possible, and the result of (b) is a \(1 \times 3 \) matrix (or a row 3-vector). \(u^Tvu^T \) has \((3 \times 1)(1 \times 3)(3 \times 1) \); both matrix multiplications are possible, and the result of (c) is a \(3 \times 1 \) matrix (or a column 3-vector). \(u \times v \) gives a scalar, hence (d) is undefined since cross product requires two vectors. (e) is a scalar, because \((u \times v) \) is a 3-vector, hence its dot product with \(u \) can be calculated and is a scalar.

3. Let \(u = (1,2,3) \), and \(v = (15,-7,0) \). Are these vectors orthogonal?

Be sure to justify your answer.

We calculate \(u \cdot v = 1(15) + 2(-7) + 3(0) = 1 \). Since this is nonzero, these vectors are not orthogonal.

4. For \(A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 5 \end{bmatrix} \), calculate \(AB \) and \(BA \).

\[AB = \begin{bmatrix} 0+0 & 1-0 & -1+0 \\ -1+0 & 0-0 & 3-0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix} \]. \(BA = \begin{bmatrix} 0-1 & 2+0 & -2+3 \\ 0+1 & 0+0 & 0-3 \\ 0+5 & 1+0 & -1+15 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & -3 \\ 5 & 1 & 14 \end{bmatrix} \).

5. For \(u = (1,0,2) \) and \(v = (0,-3,1) \), calculate \(u \times v \) and \(v \times u \).

Method 1, determinant formula: \(u \times v = \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ -1 & 0 & 3 \end{vmatrix} = (0+6)i - (1-0)j + (0-0)k = 6i - 1j - 3k = (6,-1,-3) \)

\(v \times u = \begin{vmatrix} i & j & k \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{vmatrix} = (-6+0)i - (0-1)j + (0+3)k = -6i + 1j + 3k = (-6,1,3) \)

Method 2, i,j,k technique: \(u \times v = (i+2k) \times (-3j+1) = -3(i \times j) + (i \times k) - 6(k \times j) + 2(k \times k) = -3(i \times j) + (i \times k) - 6(i \times j) + 2(k \times k) = -6(i \times j) + 3(k \times k) = -6(-1) + 3(6) = 6 + 18 = 24 \)

\(v \times u = (-3j + k) \times (i + 2k) = -3(j \times i) - 6(j \times k) + (k \times i) + 2(k \times k) = -6(k \times v) = -6(3) = -18 \)

\(u \times v = (i \times k) - (j \times k) = 2k - 6i + j = (-6,1,3) \)