Math 254 Exam 9 Solutions

1. Carefully define the term "basis". Give two examples in \mathbb{R}^{2}.

A basis is a set of vectors that is independent and maximal. Four examples are $\{(1,0),(0,1)\},\{(1,1),(3,2)\},\{(1,0),(3,7)\},\{(-8,8),(-8,7)\}$.
2. Consider the basis $S=\left\{u_{1}, u_{2}\right\}=\{(1,-2),(2,-5)\}$ of \mathbb{R}^{2}, and the linear operator $F(x, y)=(2 x+3 y, 4 x-5 y)$. Find the matrix representation $[F]_{S}$.

The change-of-basis matrix from the standard basis E to S is $P=\left[\begin{array}{rr}1 & 2 \\ -2 & -5\end{array}\right]$. We also have $[F]_{E}=\left[\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right]$. We now calculate $P^{-1}=\left[\begin{array}{cc}5 & 2 \\ -2 & -1\end{array}\right]$, and now $[F]_{S}=P^{-1}[F]_{E} P=$ $\left[\begin{array}{cc}5 & 2 \\ -2 & -1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]=\left[\begin{array}{cc}8 & 11 \\ -6 & -11\end{array}\right]$.
3. Let V be the vector space of functions that have as a basis $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}=$ $\{1, \sin \theta, \cos \theta, \sin 2 \theta, \cos 2 \theta\}$. Let D be the differential operator on V. Find the matrix representation $[D]_{S}$.
BONUS: What is the nullity and rank of D ?
We calculate $D\left(u_{1}\right)=0, D\left(u_{2}\right)=u_{3}, D\left(u_{3}\right)=-u_{2}, D\left(u_{4}\right)=2 u_{5}, D\left(u_{5}\right)=-2 u_{4}$.
Therefore $[D]_{S}=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 2 & 0\end{array}\right]$. BONUS: $\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is $[D]_{S}$ in row
canonical form. This is rank four; D must have the same rank. Since S has dimension 5 , the nullity of D is $5-4=1$.
4. Set $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$. Find two other matrices similar to A.

Many solutions exist; choose any invertible matrix P, calculate P^{-1}, and $P^{-1} A P$ will be similar to A. For $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, we have $P^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 / 2\end{array}\right]$, and $P^{-1} A P=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right] \sim A$. For $P=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], P^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$, and $P^{-1} A P=\left[\begin{array}{cc}-2 & -4 \\ 3 & 5\end{array}\right] \sim A$.
5. Prove that, for any square matrices A, B, if A is similar to B, then B must be similar to A.

1. Suppose that A is similar to B.
2. Hence, there is some invertible matrix, P, such that $A=P^{-1} B P$.
3. Multiply on the left by P, and on the right by P^{-1} to get $P A P^{-1}=P P^{-1} B P P^{-1}=$ $I B I=B$.
4. Set $Q=P^{-1}$. Q is invertible, and $Q^{-1}=\left(P^{-1}\right)^{-1}=P$.
5. There is an invertible matrix, namely Q, such that $B=Q^{-1} A Q$.
6. Hence, B is similar to A.
