Math 254 Exam 7a Solutions

1. Carefully define the term "linear combination".

A linear combination of some objects (vectors, variables, etc.) is the sum of those objects, each multiplied by a scalar.
2. Choose ALWAYS or SOMETIMES or NEVER.
(a) An inner product space is ALWAYS a vector space.
(b) A normed space is SOMETIMES an inner product space.
(c) A vector space is SOMETIMES an inner product space.
(d) An inner product space is ALWAYS a normed space.
(e) A normed space is ALWAYS a vector space.
(f) A vector space is SOMETIMES a normed space.
3. Carefully state the three axioms of an inner product.
(I1) $<a \overline{u_{1}}+b \overline{u_{2}}, \bar{v}>=a<\overline{u_{1}}, \bar{v}>+b<\overline{u_{2}}, \bar{v}>$
(I2) $\langle\bar{u}, \bar{v}\rangle=<\bar{v}, \bar{u}\rangle$
(I3) $\langle\bar{u}, \bar{u}\rangle \geq 0$; further, $\langle\bar{u}, \bar{u}\rangle=0$ precisely when $\bar{u}=\overline{0}$.

For the next two questions, consider the vector space $P(t)$ with inner product given by $\langle u, v\rangle=\int_{0}^{1} u(t) v(t) d t$. Let $f(t)=t$, and $g(t)=a t+1$, for some unknown constant a.
4. For which value(s) of a are f and g orthogonal? $<f, g>=\int_{0}^{1} a t^{2}+t d t=a t^{3} / 3+t^{2} /\left.2\right|_{0} ^{1}=a / 3+1 / 2 . f, g$ are orthogonal precisely when $<f, g\rangle=0$; this occurs for $a=-3 / 2$.
5. We want to find which value(s) of a cause f, g to have a 60° angle between them. Set up (but do not solve) an equation in a that would answer this question. BONUS: Solve the equation.
$\cos \left(60^{\circ}\right)=1 / 2=\frac{\langle f, g>}{\|f\|\| \| \|} . \quad<f, g>=a / 3+1 / 2$, as calculated before. $\|f\|=$ $\sqrt{\int_{0}^{1} t^{2} d t}=\sqrt{t^{3} /\left.3\right|_{0} ^{1}}=\sqrt{1 / 3} . \quad\|g\|=\sqrt{\int_{0}^{1}(a t+1)^{2} d t}=\sqrt{\int_{0}^{1} a^{2} t^{2}+2 a t+1 d t}=$ $\sqrt{a^{2} t^{3} / 3+a t^{2}+\left.t\right|_{0} ^{1}}=\sqrt{a^{2} / 3+a+1}$ Hence, we need to solve $1 / 2=\frac{a / 3+1 / 2}{\sqrt{1 / 3} \sqrt{a^{2} / 3+a+1}}$.
BONUS: $1 / 2=\frac{a / 3+1 / 2}{\sqrt{1 / 3} \sqrt{1 / 3} \sqrt{a^{2}+3 a+3}}=\frac{a+3 / 2}{\sqrt{a^{2}+3 a+3}}$. We cross-multiply to get $a+3 / 2=$ $(1 / 2) \sqrt{a^{2}+3 a+3}$. We now square both sides to get $(1 / 4)\left(a^{2}+3 a+3\right)=(a+3 / 2)^{2}=$ $a^{2}+3 a+9 / 4$. We rearrange to get $(3 / 4) a^{2}+(9 / 4) a+(6 / 4)=0$. We simplify by multiplying both sides by $(4 / 3)$ to get $a^{2}+3 a+2=0$. We factor this to get $(a+2)(a+1)=0$ and thus $a=-1,-2$. However, $a=-2$ is extraneous; $(-2) / 3+1 / 2<$ 0 , so for this value of a, the vectors do not have angle 60° (in fact, they have angle 120°). This leaves only $a=-1$.

