Math 254 Exam 6 Solutions

1. Carefully define the Linear Algebra term "independent".

A set of vectors is independent if no nondegenerate linear combination yields $\overline{0}$.
2. In the vector space $M_{2,3}$ of 2×3 matrices, set:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 5
\end{array}\right], B=\left[\begin{array}{rrr}
2 & 4 & 7 \\
10 & 1 & 13
\end{array}\right], C=\left[\begin{array}{rrr}
1 & 2 & 5 \\
8 & 2 & 11
\end{array}\right]
$$

Determine whether or not $\{A, B, C\}$ is independent.
Let E be the standard basis for $M_{2,3}$. Then $[A]_{E}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 0\end{array}\right],[B]_{E}=$ $[24710113],[C]_{E}=\left[\begin{array}{llll}1 & 2 & 5 & 8 \\ 2 & 11\end{array}\right]$. We put these row matrices into a larger matrix, which we then put into echelon form:

$$
\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 0 & 5 \\
2 & 4 & 7 & 10 & 1 & 13 \\
1 & 2 & 5 & 8 & 2 & 11
\end{array}\right] \sim\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 0 & 5 \\
0 & 0 & 1 & 2 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This is seen to have rank 2 , hence $\{A, B, C\}$ is dependent.
ALTERNATE SOLUTION:
$\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 7 & 5 \\ 4 & 10 & 8 \\ 0 & 1 & 2 \\ 5 & 13 & 11\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
This has rank 2 , hence $\{A, B, C\}$ is dependent.
3. In the vector space $P_{3}(x)$ of polynomials of degree at most 3 , set $u_{1}=$ $x^{3}+3 x^{2}-2 x+4, u_{2}=2 x^{3}+7 x^{2}-2 x+5, u_{3}=x^{3}+5 x^{2}+2 x-2, u_{4}=$ $2 x^{3}+6 x^{2}-4 x+5$

Set $S=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Find the dimension of S, and a basis.
Let $E=\left\{x^{3}, x^{2}, x, 1\right\}$ be the usual basis for $P_{3}(x)$. We have $\left[u_{1}\right]_{E}=$ $\left[\begin{array}{lll}1 & 3 & -2\end{array}\right],\left[u_{2}\right]_{E}=\left[\begin{array}{lll}2 & 7 & -2\end{array}\right],\left[u_{3}\right]_{E}=\left[\begin{array}{llll}1 & 5 & 2 & -2\end{array}\right],\left[u_{4}\right]_{E}=\left[\begin{array}{lll}2 & 6 & -4\end{array}\right]$. We put these row matrices into a larger matrix, which we then put into echelon form:

$$
\left[\begin{array}{rrrr}
1 & 3 & -2 & 4 \\
2 & 7 & -2 & 5 \\
1 & 5 & 2 & -2 \\
2 & 6 & -4 & 5
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 3 & -2 & 4 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This has rank 3; hence $\operatorname{dim} S=3$. A basis for S is $\left\{x^{3}+3 x^{2}-2 x+\right.$ $\left.4, x^{2}+2 x-3,1\right\}$.
ALTERNATE SOLUTION:

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 2 \\
3 & 7 & 5 & 6 \\
-2 & -2 & 2 & -4 \\
4 & 5 & -2 & 5
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This has rank 3 ; hence $\operatorname{dim} S=3$. Because the pivots are in the first, second, and fourth columns, a basis for S is $\left\{u_{1}, u_{2}, u_{4}\right\}$.
4. In the vector space \mathbb{R}^{2}, set $S=\{(1,3),(1,4)\}$, a basis. Find the changeof basis matrix from S to the standard basis, and use this matrix to find $[(5,-3)]_{S}$.
$P=\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right]$ consists of S in column form; $Q=P^{-1}=\left[\begin{array}{rr}4 & -1 \\ -3 & 1\end{array}\right]$ is the desired matrix. We find $[(5,-3)]_{S}=Q\left[\begin{array}{r}5 \\ -3\end{array}\right]=\left[\begin{array}{r}23 \\ -18\end{array}\right]$.
5. In the vector space \mathbb{R}^{3}, set $T=\{(1,1,1),(0,1,2),(1,1,3)\}$, a basis. Find $[(1,2,2)]_{T}$.
$P=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$ consists of S in column form; $Q=P^{-1}=\left[\begin{array}{rrr}1 / 2 & 1 & -1 / 2 \\ -1 & 1 & 0 \\ 1 / 2 & -1 & 1 / 2\end{array}\right]$
is the change-of-basis matrix (found by applying ERO's to $[P \mid I]$ until we achieve $[I \mid Q]$. We find $[(1,2,2)]_{T}=Q\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{r}3 / 2 \\ 1 \\ -1 / 2\end{array}\right]$.

