Math 254 Exam 5 Solutions

1. Carefully define the Linear Algebra term "independent".

A set of vectors is independent if there is no nondegenerate linear combination of them that yields the zero vector.
The next three questions concern the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5\end{array}\right]$.
All three questions benefit from reducing A to row echelon form. We do $-2 R_{1}+R 2 \rightarrow$ $R_{2},-3 R_{1}+R_{3} \rightarrow R_{3},-2 R_{2}+R_{3} \rightarrow R_{3}$. This is actually Example 5.5 in the text, on p. 189 (except for a typo; the last row of the intermediate step should be $04-6-2$).

The row echelon form is $B=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 0 & 2 & -3 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
2. Set $S=$ rowspace (A). Find a basis for S. Determine the dimension of S.

Because B has two nonzero rows, the rowspace has dimension 2. A basis is $\{(1,2,0,-1),(0,2,-3,-1)\}$.
3. Set $T=$ columnspace (A). Find a basis for T. Determine the dimension of T.

Because B has two pivots, the columnspace has dimension 2 (also because of the answer to the previous question). Because the pivots are in the first two columns, a basis for the columnspace is $\{(1,2,3),(2,6,10)\}$.
4. Write the matrix equation $A X=0$ as a homogeneous system of equations; find a basis for its solution space.

$$
\begin{aligned}
\mathrm{x}+2 \mathrm{y}+0 \mathrm{z}-\mathrm{w} & =0 \\
2 \mathrm{x}+6 \mathrm{y}-3 \mathrm{z}-3 \mathrm{w} & =0 \\
3 \mathrm{x}+10 \mathrm{y}-6 \mathrm{z}-5 \mathrm{w} & =0
\end{aligned}
$$

We look at $B ; z, w$ are free variables, hence the solution space is 2 dimensional. To find a basis, try $z=1, w=0:(-3,3 / 2,1,0)$ and $z=0, w=1:(0,1 / 2,0,1)$; hence $\{(-3,3 / 2,1,0),(0,1 / 2,0,1)\}$ is a basis for the solution space.
5. In the vector space \mathbb{R}^{3}, set $U=\operatorname{span}\{(1,2,3),(5,-2,3)\}, V=\operatorname{span}\{(-1,2,1)\}$. Determine the dimensions of each of $U, V, U \cap V, U+V$. Justify your answers.
$\operatorname{dim} U=2$ since the two basis vectors are not scalar multiples of each other. $\operatorname{dim} V=1$. To find $\operatorname{dim}(U+V)$, we put $\left[\begin{array}{rrr}1 & 2 & 3 \\ 5 & -2 & 3 \\ -1 & 2 & 1\end{array}\right]$ into row echelon form: $\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -12 & -12 \\ 0 & 0 & 0\end{array}\right]$. Hence $\operatorname{dim}(U+V)=2$, and therefore the line V actually lies in the plane U. This means that $V=U \cap V$, so $\operatorname{dim}(U \cap V)=1$. Alternatively, by Theorem 5.9, $\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)$. We have $2=2+1-\operatorname{dim}(U \cap V)$; we solve this to get $\operatorname{dim}(U \cap V)=1$.

