Math 254 Exam 2b Solutions

1. Carefully define the term "dimension" as it applies to vector spaces. Give two examples: a three-dimensional vector space, and an infinite-dimensional vector space.
The dimension of a vector space is the number of elements in a basis. \mathbb{R}^{3}, the set of all 3 -vectors, is a three-dimensional vector space. $\mathbb{R}[x]$, the set of all polynomials with real coefficients, is an infinite-dimensional vector space.
2. Write the system as a matrix equation.

$$
\left[\begin{array}{rrrr}
1 & 3 & -3 & 0 \\
0 & 0 & 1 & 3 \\
3 & 9 & -2 & 5 \\
2 & 6 & 3 & -1 \\
5 & 15 & 0 & -7
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-1 \\
-3 \\
11 \\
17
\end{array}\right]
$$

3. Write the system as an augmented matrix; put this matrix in echelon form. Justify each step using elementary row operations. Using the echelon form, find all solutions to the system (if any).

$$
\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
3 & 9 & -2 & 5 & -3 \\
2 & 6 & 3 & -1 & 11 \\
5 & 15 & 0 & -7 & 17
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 7 & 5 & 9 \\
0 & 0 & 9 & -1 & 19 \\
0 & 0 & 15 & -7 & 37
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & -16 & 16 \\
0 & 0 & 0 & -28 & 28 \\
0 & 0 & 0 & -52 & 52
\end{array}\right] \rightarrow
$$

$$
\rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & -16 & 16 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The first step combines $-3 R_{1}+R_{3} \rightarrow R_{3},-2 R_{1}+R_{4} \rightarrow R_{4},-5 R_{1}+R_{5}$. The second step combines $-7 R_{2}+R_{3} \rightarrow R_{3},-9 R_{2}+R_{4} \rightarrow R_{4},-15 R_{2}+R_{5} \rightarrow R_{5}$. The third step combines $(-28 / 16) R_{3}+R_{4} \rightarrow R_{4},-(52 / 16) R_{3}+R_{5} \rightarrow R_{5}$. The end result is in echelon form; x, z, w are basic, and y is free; set $y=a$. We solve $-16 w=16$ to get $w=-1$. We solve $z+3(-1)=-1$ to get $z=2$. We solve $x+3 y-3 z=-4$ to get $x=2-3 a$. Putting it all together, the solution set is $\{(2-3 a, a, 2,-1)\}$, for any real number a.
4. Write the system as an augmented matrix; put this matrix in row canonical form. Justify each step using elementary row operations. Using the row canonical form, find all solutions to the system (if any).

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & -16 & 16 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 3 & -3 & 0 & -4 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow} \\
& \rightarrow\left[\begin{array}{rrrrr|r}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We begin where the previous problem left off. The first step is $(-1 / 16) R_{3} \rightarrow R_{3}$. The second step is $-3 R_{3}+R_{2} \rightarrow R_{2}$. The third step is $3 R_{2}+R_{1} \rightarrow R_{1}$. We see immediately that $w=-1, z=-2, x=2-3 y ; y=a$, a free parameter. This yields the same solution as above.
5. Write the system as an augmented matrix; put this matrix in echelon form using partial pivoting. Justify each step using elementary row operations.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
5 & 15 & 0 & -7 & 17 \\
0 & 0 & 1 & 3 & -1 \\
3 & 9 & -2 & 5 & -3 \\
2 & 6 & 3 & -1 & 11 \\
1 & 3 & -3 & 0 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
5 & 15 & 0 & -7 & 17 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & -2 & 46 / 5 & -66 / 5 \\
0 & 0 & 3 & 9 / 5 & 21 / 5 \\
0 & 0 & -3 & 7 / 5 & -37 / 5
\end{array}\right] \rightarrow} \\
& \rightarrow\left[\begin{array}{rrrr|r}
5 & 15 & 0 & -7 & 17 \\
0 & 0 & 3 & 9 / 5 & 21 / 5 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & -2 & 46 / 5 & -66 / 5 \\
0 & 0 & -3 & 7 / 5 & -37 / 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
5 & 15 & 0 & -7 & 17 \\
0 & 0 & 3 & 9 / 5 & 21 / 5 \\
0 & 0 & 0 & 12 / 5 & -12 / 5 \\
0 & 0 & 0 & 52 / 5 & -52 / 5 \\
0 & 0 & 0 & 16 / 5 & -16 / 5
\end{array}\right] \rightarrow \\
& \rightarrow\left[\begin{array}{rrrr|r}
5 & 15 & 0 & -7 & 17 \\
0 & 0 & 3 & 9 / 5 & 21 / 5 \\
0 & 0 & 0 & 12 / 5 & -12 / 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Before the first step, we performed $R_{1} \leftrightarrow R_{5}$, to put the 5 in the upper left corner. The next step combines $(-3 / 5) R_{1}+R_{3} \rightarrow R_{3},(-2 / 5) R_{1}+R_{4} \rightarrow R_{4},(-1 / 5) R_{1}+$ $R_{5} \rightarrow R_{5}$. The next step was $R_{2} \leftrightarrow R_{4}$, to put the 3 in the upper left corner of the remaining box (it would have also been correct to do $R_{2} \leftrightarrow R_{5}$). The next step combines $(-1 / 3) R_{2}+R_{3} \rightarrow R_{3},(2 / 3) R_{2}+R_{4} \rightarrow R_{4}, R_{2}+R_{5} \rightarrow R_{5}$. The final step combines $(-52 / 12) R_{3}+R_{4} \rightarrow R_{4},(-16 / 12) R_{3}+R_{5} \rightarrow R_{5}$.

