Math 254 Exam 10 Solutions

1. Carefully define the term "linear mapping (transformation)". Give two examples in \mathbb{R}^{2}.

A function f whose domain and codomain are vector spaces. In addition, it must satisfy two properties: for any vectors u, v and scalar $k, f(u+v)=f(u)+f(v), f(k u)=k f(u)$. Three examples in \mathbb{R}^{2} are: $f(x, y)=(x, y), f(x, y)=(3 x+y,-y), f(x, y)=(0, x)$.
For the next three problems, consider the matrix $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & 1 & -1 \\ -1 & -2 & -3\end{array}\right]$.
2. Calculate $|A|$ by using the formula for 3×3 determinants.

$$
|A|=-6+1+(-6)-(-3)-4-(-3)=-9
$$

3. Calculate $|A|$ by expanding on the second column.

$$
|A|=(-1) 1\left|\begin{array}{rr}
1 & -1 \\
-1 & -3
\end{array}\right|+(+1) 1\left|\begin{array}{cc}
2 & 3 \\
-1 & -3
\end{array}\right|+(-1)(-2)\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|=-(-3-1)+(-6+3)+2(-2-
$$

$$
3)=-9
$$

4. Calculate $|A|$ by making A triangular with elementary operations.

$$
-2 R_{2}+R_{1} \rightarrow R_{1}, R_{2}+R_{3} \rightarrow R_{3}, R_{1} \leftrightarrow R_{2},-R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & 0 & -9
\end{array}\right]
$$

This matrix has determinant $(1)(-1)(-9)=9$. None of the operations we did change the determinant, apart from swapping two rows, which multiplied it by (-1). Hence the determinant is $9 /(-1)=-9$.
5. Calculate $|B|$, for $B=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 0 \\ 1 & 0 & 2 & 0 & -2 \\ 0 & -1 & 2 & 5 & 0 \\ -2 & 0 & 0 & 2 & 3 \\ 3 & 0 & 1 & 0 & 1\end{array}\right]$.

Many paths to the solution are possible; the simplest follows. $2 R_{3}+R_{1} \rightarrow R_{1}$ yields a matrix with only one nonzero entry in the second column; we expand on that second column to get $|B|=(-1)(-1)|C|$. In matrix C, we perform $-7 R_{3}+R_{1} \rightarrow R_{1}$ to get a matrix with only one nonzero entry in the third column; we expand on that third column to get $|C|=(+1)(2)|D|$. We find $|D|=116$ using the 3×3 determinant formula. Hence $|C|=2|D|=232$, and $|B|=|C|=232$.

$$
C=\left[\begin{array}{cccc}
1 & 7 & 14 & 0 \\
1 & 2 & 0 & -2 \\
-2 & 0 & 2 & 3 \\
3 & 1 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{ccc}
15 & 7 & -21 \\
1 & 2 & -2 \\
3 & 1 & -1
\end{array}\right]
$$

