1. Carefully define the term “basis”. Give two examples in \mathbb{R}^2.

2. Consider the linear mapping $f : \mathbb{R}^3 \rightarrow \mathbb{R}^4$ given by $f(x, y, z) = (x - y, y - z, z - x, x + z - 2y)$. Represent f as a matrix multiplication.

3. Use Gaussian elimination to put \[
\begin{bmatrix}
2 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 \\
1 & 2 & 3 & 4 \\
\end{bmatrix}
\] into echelon form.

4. Find all solutions to the following system of linear equations.

\[
\begin{align*}
4u - 3w &= 0 \\
-2u + 3v + 2w &= -1 \\
6u - 6v - 6w &= 1
\end{align*}
\]

\[\text{Student Performance on Embedded Questions}\]

<table>
<thead>
<tr>
<th>Question</th>
<th>Right</th>
<th>Partially Right</th>
<th>Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85%</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>85%</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>85%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>4</td>
<td>77%</td>
<td>15%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Note: $n = 13$; Percentages may not add to 100\% due to rounding.