1. Carefully define the following terms: \(\cap, \cup \) (absolute) complement, Cartesian product.

Given sets \(S, T \), \(S \cap T = \{ x : x \in S \land x \in T \} \). Given sets \(S, T, S \cup T = \{ x : x \in S \lor x \in T \} \). Given sets \(S, U \) with \(S \subseteq U \), we define the absolute complement of \(S \) as \(U \setminus S \). Given sets \(S, T \), we define the Cartesian product of \(S, T \) as \(\{(x, y) : x \in S, y \in T \} \).

2. Carefully define the following terms: relation, symmetric (relation), antisymmetric (relation), trichotomous (relation).

Given sets \(S, T \), a relation from \(S \) to \(T \) is a subset of \(S \times T \). A relation \(R \) on \(S \) is symmetric if for all \(x, y \in S \), \(xRy \leftrightarrow yRx \). A relation \(R \) on \(S \) is antisymmetric if for all \(x, y \in S \), \((xRy \land yRx) \rightarrow x = y \). A relation \(R \) on \(S \) is trichotomous if for all \(x, y \in S \), \(x \neq y \rightarrow xRy \lor yRx \).

3. Let \(S = \{a, b\} \). Give a two-element subset of \(2^{S \times S} \). Be careful with notation.

Note that \(S \times S = \{(a, a), (a, b), (b, a), (b, b)\} \). Elements of \(2^{S \times S} \) are subsets of \(S \times S \). We seek a set, which contains two elements. Each of those elements must be a subset of \(S \times S \), namely a set of ordered pairs. Many solutions are possible, such as \(\{(a, a), (b, b)\} \) or \(\emptyset, S \times S \) or \(\{(a, a), (a, b), (a, a), (b, a)\} \).

4. Let \(S \) be a set. Prove that \(S \cup \emptyset = S \).

This must be proved in two parts. First we prove \(\subseteq \). Let \(x \in S \cup \emptyset \). Then \(x \in S \lor x \in \emptyset \). We have two cases: \(x \in S \) or \(x \in \emptyset \). The second case can’t happen, so \(x \in S \). This proves \(S \cup \emptyset \subseteq S \). Next, we prove \(\supseteq \). Let \(x \in S \). By addition, \(x \in S \lor x \in \emptyset \). Hence \(x \in S \cup \emptyset \). This proves \(S \cup \emptyset \supseteq S \).

5. Give a partition of \(\mathbb{Z} \) with three parts.

Many solutions are possible; all of them consist of a set of three parts such as \(\{P_0, P_1, P_2\} \). One solution is \(P_0 = \{0\}, P_1 = \mathbb{N}, P_2 = \{x \in \mathbb{Z} : x < 0\} \). Another solution is to apply the Division Algorithm with \(3 \). \(P_i \) will be the set of integers with remainder \(i \) (which must be 0, 1, or 2). Another solution is \(P_0 = \{0\}, P_1 = \{1\}, P_2 = \mathbb{Z} \setminus \{0, 1\} \).

For problems 6 and 7, take ground set \(S = \{-1, 0, 1\} \) with relation \(R = \{(a, b) : a \leq b^2\} \).

6. With \(R, S \) as above, prove or disprove that \(R \) is reflexive.

The statement is true. Because \(-1 \leq (-1)^2 \), \((-1, -1) \in R \). Because \(0 \leq 0^2 \), \((0, 0) \in R \). Because \(1 \leq 1^2 \), \((1, 1) \in R \). These three together imply that \(R \) is reflexive.

7. With \(R, S \) as above, prove or disprove that \(R \) is transitive.

The statement is false. We need a specific counterexample. There is only one (it can be found by drawing the relation’s digraph). Because \(1 \leq (-1)^2 \), \((-1, 1) \in R \). Because \(-1 \leq 0^2 \), \((-1, 0) \in R \). However, \((1, 0) \notin R \), because \(1 \not\leq 0^2 \). Hence \(R \) is not transitive.

8. Prove or disprove: For all sets \(R, S \), we have \(R \setminus S = R \Delta S \).

The statement is false. We need a specific counterexample. Many are possible. A simple one is \(R = \{1, 3\}, S = \{2, 3\} \). We have \(R \setminus S = \{1\} \), while \(R \Delta S = (R \setminus S) \cup (S \setminus R) = \{1, 2\} \).

9. Prove or disprove: For all sets \(R, S, T \) satisfying \(R \subseteq S \), \(S \subseteq T \), and \(T \subseteq R \), we must have \(R = S \).

The statement is true. To prove \(R = S \), we need to prove \(R \subseteq S \) (one of our hypotheses already), and \(S \subseteq R \). Let \(x \in S \). Since \(S \subseteq T \), \(x \in T \). Since \(T \subseteq R \), \(x \in R \). Hence \(S \subseteq R \).

10. Prove or disprove: \(|\mathbb{N}| = |\mathbb{N}_0 \times \mathbb{N}_0| \).

The statement is true.

PROOF 1: As in Thm 9.17 and Exercise 9.24, for any \(n \in \mathbb{N} \) we can uniquely write \(n = 2^a(2b + 1) \), and pair \(n \leftrightarrow (a, b) \).

PROOF 2: We write all the ordered pairs in \(\mathbb{N}_0 \times \mathbb{N}_0 \) in the first quadrant at their locations, and take a zig-zag path starting at the origin and passing through all the pairs. We pair the \(n^{th} \) position along the path with the ordered pair at that position.

PROOF 3: We pair \(\mathbb{N} \) with a subset of \(\mathbb{N}_0 \times \mathbb{N}_0 \), for example via \(n \leftrightarrow (n, 0) \). This proves that \(|\mathbb{N}| \leq |\mathbb{N}_0 \times \mathbb{N}_0| \).

We next pair \(\mathbb{N}_0 \times \mathbb{N}_0 \) with a subset of \(\mathbb{N} \), for example via \((a, b) \leftrightarrow 2^a3^b \). This proves that \(|\mathbb{N}| \geq |\mathbb{N}_0 \times \mathbb{N}_0| \).

Lastly, we apply the Cantor-Schröder-Bernstein Theorem.