1. Consider \(f : \mathbb{R} \rightarrow \mathbb{R} \) given by \(f(x) = x\lfloor x \rfloor \). Prove or disprove that \(f \) is injective.

 False. We have \(f(0) = 0 \lfloor 0 \rfloor = 0 = \frac{1}{2} \lfloor \frac{1}{2} \rfloor = f\left(\frac{1}{2}\right) \), but \(0 \neq \frac{1}{2} \).

2. Let \(A, B, C \) be sets, with \(B \subseteq C \). Prove that \((A \times B) \subseteq (A \times C) \).

 Let \(x \in A \times B \) be arbitrary. There must be some \(a \in A, b \in B \) such that \(x = (a, b) \).
 Since \(B \subseteq C \), in fact \(b \in C \). Hence \(x = (a, b) \in A \times C \). Therefore \((A \times B) \subseteq (A \times C) \).

3. Carefully define each of the following terms:
 a. relation

 A relation from set \(A \) to set \(B \) is a subset of \(A \times B \).

 b. symmetric (relation)

 A relation \(R \) is symmetric if whenever \((a, b) \in R \), we must have \((b, a) \in R \).

 c. equivalence relation

 A relation is an equivalence relation if it is reflexive, symmetric, and transitive.

 d. partial order

 A relation is a partial order if it is reflexive, antisymmetric, and transitive.

 e. surjective

 A function \(f : A \rightarrow B \) is surjective if for every \(b \in B \) there is at least one \(a \in A \) such that \(f(a) = b \).

4. Consider the relation \(R \) on \(\mathbb{Z} \) given by \(aRb \iff |a - b| \leq 1 \). Prove or disprove that \(R \) is transitive.

 False. We have \(3R2 \) since \(|3 - 2| \leq 1 \). We have \(2R1 \) since \(|2 - 1| \leq 1 \). But \(3R1 \) since \(|3 - 1| > 1 \).

5. Find the general solution to the recurrence relation \(a_n = -a_{n-1} + 6a_{n-2} \).

 This relation has characteristic equation \(r^2 = -r + 6 \), which rearranges as \(r^2 + r - 6 = 0 \),
 and factors as \((r + 3)(r - 2) = 0 \). There are two roots, \(-3\) and \(2\), so the general solution is \(a_n = A(-3)^n + B(2)^n \).