MATH 245 F20, Exam 1 Solutions

1. Let \(b, c \) be odd integers. Without using theorems, prove that \(b(c - 2) \) is odd.
 Since \(b, c \) are odd, there exist integers \(y, z \) with \(b = 2y + 1, c = 2z + 1 \). We calculate \(b(c - 2) = (2y + 1)(2z - 1) = 4yz - 2y + 2z - 1 = 4yz - 2y + 2z - 2 + 1 = 2(2yz - y + z - 1) + 1 \). Since \(y, z \) are integers, so is \(2yz - y + z - 1 \). Hence \(b(c - 2) \) is odd, being the sum of 1 with twice an integer.

2. Prove or disprove: For all propositions \(p, q \), the proposition \((p \uparrow q) \downarrow (p \leftrightarrow q)\) is a contradiction.
 We look at the truth table at right, and see that the last column is all \(F \). Hence \((p \uparrow q) \downarrow (p \leftrightarrow q) \equiv F\), and therefore \((p \uparrow q) \downarrow (p \leftrightarrow q)\) is a contradiction.

3. Let \(p, q, r, s \) be propositions. Prove that \(p \lor q, q \land r, p \rightarrow s \rightarrow q \lor s \).
 We begin by assuming that \(p \lor q, q \land r \), and \(p \rightarrow s \) are all true.
 SOLUTION 1: We only need the hypothesis \(q \land r \). By simplification, \(q \). By addition, \(q \lor s \).
 SOLUTION 2: We have two cases, based on \(p \lor q \). Case 1: If \(p \) is true, we apply modus ponens to \(p \rightarrow s \) to get \(s \). By addition, \(q \lor s \). Case 2: If instead \(q \) is true, we directly apply addition to get \(q \lor s \). In both cases \(q \lor s \) holds.
 SOLUTION 3: It is also possible to do this with a huge truth table (16 rows!). NOT RECOMMENDED

4. Prove the following without truth tables: For any propositions \(p, q, r, s \), we have \(p \rightarrow q, q \rightarrow r, r \rightarrow s \rightarrow p \rightarrow s \).
 We begin by assuming that \(p \rightarrow q, q \rightarrow r, r \rightarrow s \) are all true.
 We consider two cases: \(q \) might be \(T \) or \(F \). If \(q \) is \(T \), then by modus tollens with \(p \rightarrow q \), we have \(\neg p \).
 By addition, \(s \lor \neg p \). If instead \(q \) is \(F \), then by modus ponens with \(q \rightarrow r \), we have \(q \). By modus ponens with \(r \rightarrow s \), we have \(s \). By addition, \(s \lor \neg p \).
 In both cases, we get \(s \lor \neg p \). Finally, by conditional interpretation, we get \(p \rightarrow s \).
 It is also possible to do this using different cases, such as \(p \) being \(T \) or \(F \).

5. Let \(x \in \mathbb{R} \). Prove that if \(x^2 \) is irrational, then \(x \) is irrational.
 We use a contrapositive proof. Assume that \(x \) is rational. Then there are integers \(a, b \) with \(b \neq 0 \) and \(x = \frac{a}{b} \). We have \(x^2 = \frac{a^2}{b^2} \). Note that \(a^2, b^2 \) are integers (since \(a, b \) are), and \(b^2 \neq 0 \) (since \(b \neq 0 \)). Hence \(x^2 \) is rational.

6. Fix our domain to be \(\mathbb{Z} \) for all variables. Simplify the following proposition as much as possible (where nothing is negated): \(\neg \forall x \\forall y \exists z \ (x < y) \rightarrow (x < z \leq y) \).
 We first pull the negation inside the quantifiers: \(\exists x \exists y \forall z \ (x < y) \land \neg(x < z \leq y) \).
 We now apply Theorem 2.16 to get: \(\exists x \exists y \forall z \ (x < y) \land \neg((x < z) \land (z \leq y)) \).
 We interpret the double inequality (see p.11) to get: \(\exists x \exists y \forall z \ (x < y) \land \neg((x < z) \land (z \leq y)) \).
 We apply De Morgan’s Law (for propositions) to get: \(\exists x \exists y \forall z \ (x < y) \land (((x < z) \lor (z > y)) \lor (x < z)) \).
 We now simplify to get our answer: \(\exists x \exists y \forall z \ (x < y) \land (x \geq z) \lor (z > y) \).
 NOTE: \((x \geq z) \lor (z > y) \) cannot be combined to a double inequality, but it is possible to use distributivity to get the alternative answer \(\exists x \exists y \forall z \ (z \leq x < y) \lor (x < y < z) \).

7. Prove or disprove this proposition: \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \ (x \neq y) \land (y|x) \).
 The statement is true, and we will supply a direct proof. Let \(x \in \mathbb{Z} \) be arbitrary. We have two cases, based on whether \(x = 0 \). NOTE: it is not possible to pick a single \(y \) that works for every \(x \).
 If \(x = 0 \), choose \(y = 5 \). We have \(x \neq y \) and \(0 = (0)(5) \), so \(y|x \).
 If \(x \neq 0 \), choose \(y = -x \). We have \(x \neq y \), since otherwise \(x = y = -x \) and so \(x = -x \) but \(x \neq 0 \). Also \(x = (−1)(y) \), so \(y|x \).