1. Carefully define the following terms: Proof by Contradiction theorem, Proof by Cases theorem, Proof by Induction, Proof by Reindexed Induction.

Let \(p, q \) be propositions. The Proof by Contradiction theorem tells us that if \(p \land \neg q \equiv F \), then \(p \rightarrow q \) is true. Let \(p, q \) be propositions. The Proof by Cases theorem tells us that if there are propositions \(c_1, c_2, \ldots, c_k \) with \(c_1 \lor c_2 \lor \cdots \lor c_k \equiv T \), and each of \((p \land c_1) \rightarrow q, (p \land c_2) \rightarrow q, \ldots, (p \land c_k) \rightarrow q \), then \(p \rightarrow q \) is true. To prove \(\forall x \in \mathbb{N} \ P(x) \) by induction, we must (a) Prove \(P(1) \); and (b) Prove \(\forall x \in \mathbb{N}, P(x) \rightarrow P(x+1) \). To prove \(\forall x \in \mathbb{N} \ P(x) \) by reindexed induction, we must (a) Prove \(P(1) \); and (b) Prove \(\forall x \in \mathbb{N} \) with \(x \geq 2 \), \(P(x-1) \rightarrow P(x) \).

2. Carefully define the following terms: well-ordered, recurrence, big Omega, big Theta.

Let \(S \) be a set of numbers, with an ordering \(< \). We say that \(S \) is well-ordered by \(< \) if every nonempty subset of \(S \) has a minimum element according to \(< \). A sequence is a recurrence if all but finitely many of its terms are defined in terms of its previous terms. Given two sequences \(a_n \) and \(b_n \), we say that \(a_n \) is big Omega of \(b_n \) to mean \(\exists n_0 \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_0, M |a_n| \geq |b_n| \). Given two sequences \(a_n \) and \(b_n \), we say that \(a_n \) is big Theta of \(b_n \) to mean that \(a_n \) is big O of \(b_n \) and also \(a_n \) is big Omega of \(b_n \).

3. Suppose that an algorithm has runtime specified by the recurrence relation \(T_n = 2nT_{n/2} + 3 \). Determine what, if anything, the Master Theorem tells us.

Because \(2n \) is not a constant, the Master theorem does not apply.

4. Use induction to prove that, for all \(n \in \mathbb{N} \), \(\frac{(2n)!}{n!n!} \geq 2^n \).

Base case: \(n = 1 \). \(\frac{(2\cdot1)!}{1!1!} = 2 \), while \(2^1 = 2 \). Verified.

Inductive case: Let \(n \in \mathbb{N} \), and assume that \(\frac{(2n)!}{n!n!} \geq 2^n \). Multiply by \(\frac{(2n+2)(2n+1)}{(n+1)(n+1)} \). We get

\[
\frac{(2(n+1))!}{(n+1)!(n+1)!} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)(n+1)n!n!} \geq \frac{(2n+2)(2n+1)}{(n+1)(n+1)} \cdot 2^n = \frac{2(2n+1)}{n+1} \cdot 2n = \frac{2^n}{n+1} \cdot 2n+1 = \frac{(n+1)n2^n}{n+1} \geq 2^{n+1}.
\]

Thus \(\frac{(2(n+1))!}{(n+1)!(n+1)!} \geq 2^{n+1} \).

5. Let \(a_n = n^{1.9} + n^2 \). Prove that \(a_n = O(n^2) \).

Take \(n_0 = 1 \) and \(M = 2 \). For all \(n \geq n_0 \), we have \(n^{0.1} \geq 1 = n^0 \), so \(n^2 \geq n^{1.9} \). Hence \(a_n \leq n^2 + n^2 \), and thus \(|a_n| = a_n \leq 2n^2 = 2|n^2| \).

6. Let \(x \in \mathbb{R} \). Prove that there is at most one \(n \in \mathbb{Z} \) with \(n - \frac{1}{2} \leq x < n + \frac{1}{2} \). Do not use any theorems about floors or ceilings.

Suppose that there are \(m, n \in \mathbb{Z} \) with \(n - \frac{1}{2} \leq x < n + \frac{1}{2} \) and \(m - \frac{1}{2} \leq x < m + \frac{1}{2} \). Hence \(n - \frac{1}{2} \leq x < m + \frac{1}{2} \). Adding \(\frac{1}{2} \) to both sides, we get \(n < m + 1 \). But also \(m - \frac{1}{2} \leq x < n + \frac{1}{2} \). Subtracting \(\frac{1}{2} \) from both sides, we get \(m - 1 < n \). Hence \(m - 1 < n < m + 1 \). By Thm 1.12 in the book, since \(m, n \in \mathbb{Z} \), in fact \(m = n \).
7. Let \(x \in \mathbb{R} \). Prove that there is at least one \(n \in \mathbb{Z} \) with \(n - \frac{1}{2} \leq x < n + \frac{1}{2} \). Do not use any theorems about floors or ceilings.

We use maximum element induction. Define \(S = \{ m \in \mathbb{Z} : m - \frac{1}{2} \leq x \} \), a nonempty set of integers with \(x + \frac{1}{2} \) as an upper bound. Hence \(S \) has some maximum element \(n \). \(n - \frac{1}{2} \leq x \) because \(n \in S \). We have two cases: if \(x < n + \frac{1}{2} \), we are done. If instead \(x \geq n + \frac{1}{2} \), then \(n + 1 \) is an integer, and satisfies \((n + 1) - \frac{1}{2} \leq x\), so \(n + 1 \in S \). But then \(n \) was the maximum element of \(S \), a contradiction. Hence \(n - \frac{1}{2} \leq x < n + \frac{1}{2} \).

8. Solve the recurrence, with initial conditions \(a_0 = 3, a_1 = 4 \), and relation \(a_n = 4a_{n-1} - 4a_{n-2} \) \((n \geq 2)\).

This has characteristic polynomial \(r^2 = 4r - 4 \), which factors as \((r - 2)^2 = 0\). Hence we have a double root, and the general solution is \(a_n = A2^n + Bn2^n \). Applying our initial conditions gives \(3 = a_0 = A2^0 + B \cdot 0 \cdot 2^0 = A \), and \(4 = a_1 = A2^1 + B \cdot 1 \cdot 2^1 = 2A + 2B \). The system of equations \(\{3 = A, 4 = 2A + 2B\} \) has solution \(\{A = 3, B = -1\} \), so the specific solution is \(a_n = 3 \cdot 2^n - n \cdot 2^n = (3 - n)2^n \).

9. The Tribonacci numbers are given by initial conditions \(T_0 = 0, T_1 = 1, T_2 = 1 \), and recurrence relation \(T_k = T_{k-1} + T_{k-2} + T_{k-3} \) \((k \geq 3)\). Prove that, for all \(k \in \mathbb{N} \), \(T_k < 2^k \).

We handle the three base cases \(k = 0, 1, 2 \) separately: \(T_0 = 0 < 1 = 2^0 \), \(T_1 = 1 < 2 = 2^1 \), \(T_2 = 1 < 4 = 2^2 \). We now use strong induction. Let \(k \in \mathbb{N} \) with \(k \geq 3 \). Assume that \(T_{k-1} < 2^{k-1}, T_{k-2} < 2^{k-2}, T_{k-3} < 2^{k-3} \). Now, since \(k \geq 3 \), \(T_k = T_{k-1} + T_{k-2} + T_{k-3} < 2^{k-1} + 2^{k-2} + 2^{k-3} < 2^{k-1} + 2^{k-2} + 2^{k-3} + 2^{k-3} = 2^{k-1} + 2^{k-2} + 2^{k-2} = 2^{k-1} + 2^{k-1} = 2^k \).

Hence \(T_k < 2^k \).

10. Prove that \(\sqrt{3} \) is irrational.

We argue by contradiction. Suppose that \(\sqrt{3} \) is rational. Hence we may assume there are \(m, n \in \mathbb{Z} \), with \(n \neq 0 \), and \(\sqrt{3} = \frac{m}{n} \). By cancelling any common factors, we may also assume that \(m, n \) have no common factors. Squaring, we get \(3n^2 = m^2 \) and hence \(3n^2 = m^2 \). Now, \(3|m^2 \), and \(3 \) is prime, so \(3|m \) (or \(3|m \)). Write \(m = 3k \), for some integer \(k \), and substitute back. We get \(3n^2 = (3k)^2 = 9k^2 \). Hence \(n^2 = 3k^2 \). Again, \(3|n^2 \), and \(3 \) is prime, so \(3|n \) (or \(3|n \)). Hence \(m, n \) both have the common factor \(3 \), a contradiction.