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Consider an interval in the positive rationals, I C Q Y. Set S(I) = {m €
N:3n e N,Z ¢ I}. This turns out to be a numerical semigroup, and has
been the subject of considerable recent investigation (see Chapter 4 of [2]
for an introduction). Special cases include modular numerical semigroups

(see [4]) where I = [, -] (m,n € N), proportionally modular numerical

semigroups (see [3]) where [ = [, -] (m,n, s € N), and opened modular
numerical semigroups (see [5]) where I = (=, ™) (m,n € N).

We consider instead arbitrary open intervals I = (a,b). We show that
this set of semigroups coincides with the set of semigroups generated by
closed and half-open intervals. Consequently, this class of semigroups
contains modular numerical semigroups, proportionally modular numer-
ical semigroups, as well as opened modular numerical semigroups. We
also compute two important invariants of these numerical semigroups: the
Frobenius number ¢(S(I)) and multiplicity m(S(I)).

1. PRELIMINARIES

We begin by defining a helpful function x(a,b). For a,b € R with a < b
we define k(a,b) = Lﬁj. The function x has various nice properties, for

example x(a,b) = k(ac, be) for ¢ > 0. In the special case of a = 7+, b = ™

s?
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we have s(a,b) = [2]. The following properties of x(a,b) are needed in
the sequel.

LEMMA 1.1. Let a,b € R with a < b and b # 0. Set k = k(a,b). If

Kk #0, then%g%. If K # =1, then § < A7.

Proof. We have £ < 2 < k+ 1. Assume that x ¢ {—1,0}. Then

bk 41 are all the same sign, and we have % > b*T“ > %, hence

Ky o—a> "
FT” > %> 711> and the results follow. If Kk = 0, then 0 < %a <1,
sob>0and b <b—asoa<0hence 7 <0 = Kil. If Kk = —1, then

~1< 432 <0,s0b<0anda—b<bsoa<2band ¢ >2=":1 ]

LEMMA 1.2. Let a,b € R with a < b and b > 0. Then N\ S((a,b)) =
r(a,b)
NN U [b(n—1),an].
n=1

Proof. Because S((a,b)) = NnJ,—,(an,bn), we have N\ S((a,b)) =
NNU,—,[b(n—1),an]. Since b > 0, x(a,b) # —1 and hence by Lemma 1.1,
br(a,b) > a(k(a,b)+1). Hence for n > k(a,b), the intervals are empty and

may be excluded. |

Lemma 1.2 yields an upper bound for g. This bound will later be im-
proved in Theorem 3.1, but for the purposes of Theorem 2.1 the following
weaker bound suffices.

COROLLARY 1.1. Suppose 0 < a < b. Then g(S((a,b))) < |ak(a,bd)].

2. INTERVALS

We now prove that restricting I to be open is harmless, as this class of
semigroups coincides with ones generated by closed or half-open intervals.
To reduce the number of cases to consider, we introduce the symbols {, } to
denote endpoints of an interval that are either open or closed. For example,
(a,b} indicates an interval that is open on the left. The meaning of these
symbols is determined when first used, and then remains consistent; that
is, if (a,b} is open then [a/,b} means [a’,b), and if (a, b} is half-open then
[a',b} means [a’, b].

The following lemma is the cornerstone of the interval equivalence results.
Let d(x) denote the denominator of reduced rational x.
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LEMMA 2.1. Let a € Q>° n € N. Then all rationals in the interval

(a — nd(g)+1,a + nd(s)+1>’ other than possibly a, have numerator greater

than n.

Proof. Suppose a = %, so d(a) = q. Consider any rational % with
z _ - . T _ p| — |ma=yp

01< 15 —al < = Also we have |7 — 2| = [*L2E2] >

@a

1 pT z _
va> hence mgil Ty G

a P
ng+1 q(ng+1)"
B . = . _p
because xq — yp # 0 since m # a. Combining, we get oSy b
_ _png _ _

a pn .
m T = qnat D) — mar and thus x > n. |

LEMMA 2.2. Suppose that I, J, I U J are all intervals. Then S(IUJ)
S(IYUS(J). Also, if I C J, then S(I) C S(J) and g(S(I)) > g(S(J)).

Proof.  An integer m € S(I U J) if and only if @ € I U J for some n.
This is true if and only if ™ € I or ™ € J. Hence m € S(IUJ) if and only

if m € S(I)US(J). It 1 C J, then S(J) = S(IUJ) = S(I)US(.J) 2 S(I). 1

The following theorem allows us to replace a closed endpoint with an
open one nearby, leaving the semigroup unchanged. Given a modular or
proportionally modular numerical semigroup S, it explicitly gives an open
interval I with S(I)=S.

THEOREM 2.1. Let 0 < a < b. Then S([a,b}) = S((¢/,b}), and
S({a,b]) = S{a, ), for:

N L [an@h d@rt @€ Q b — b+ Lam(a,b)bjd(b)Jrl beQ _
a ag¢Q b b¢ Q

Proof. We consider only [a,b}; {a,b] is symmetric. Suppose first that
a ¢ Q. By Lemma 2.2, S([a/,b}) = S((a/,b}) U S([d/,d']) = S((¢/,b})
since S([a’,a']) = . We now assume a € Q. Since a < 2a — a’, Lemma
2.2 implies that S((a’,b}) = S((¢/,2a — a’)) U S([a,b}). We will show
S((a', 2a—a')) C 8([a,b}), implying S((a’,b}) C S([a, b}) (and S((a’,b}) 2
S([a,b}) by Lemma 2.2).

Let ¢ € S((a’,2a — a’)). Hence there is some d € N so that § € (a,2a —
a'). By Lemma 2.1, either £ = a (in which case ¢ € S([a,b})), or ¢ >

d
lar(a,b)]. In the latter case, we apply Corollary 1.1 and ¢ > |ak(a,b)| >

9(5((a,0))) = g(S([a, b})), so ¢ € S([a, b}). I

Theorem 2.2 is a counterpoint to Theorem 2.1, allowing us to replace an
open endpoint with a closed one nearby. Proposition 5 in [5] tells us more:
that every S(I) is proportionally modular; that is, there are m,n,s € N
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where S(I) = S([2, -2]). Unfortunately neither of these results give an

n’n—s

explicit formula such as in Theorem 2.1.

THEOREM 2.2. Let 0 < a < b. Then there are a’,b" with S((a,b}) =
S(la’,b}) and S({a,b)) = S({d’,b]). Purther, &, b c Q.

Proof. We consider only (a,b}; {a,b) is symmetric. Suppose first that
a ¢ Q. By Lemma 2.2, S([a’,b}) = S((a’,0}) US([a’,d']) = S((a’, b}) since
S([a’,a']) = 0. We now assume a € Q. Let ag be any rational in (a,b),
and consider the sequence given by a; = a+‘;”‘1 ,(i > 1). By Lemma 2.2,
S(la1,b}) € S(laz,b}) € -+ € S((a,b}). Set X = S((a,b}) \ S([a1,b}), a
finite set. Set Z = {% tx € X,% € (a,b}}. Since a; — a and min Z > a,
there is some j > 0 with Z C [a;,b}, and hence X C S([a;,b}). We take

a’ = aj; note that a’ € Q by construction. |

3. CALCULATING g(S((a,b))) AND m(S((a,b)))

We now improve on Corollary 1.1 by calculating ¢g(S((a,b))) exactly.
Various other results are known in related contexts. For example, if S([a, b])
is not a half-line, in [5] it was shown that % <a<b<g(S(a,b)).
Also, if 2 < a < b with a,b € N, in [6] it was shown that g(S((a,b))) = b.

THEOREM 3.1. Suppose 0 < a < b. Set k = k(a,b),k’ = maz(k(a —
1,b—1),0). Then g(S((a,b))) = |ac|, where o € Z satisfies k' < a < K.
Specifically,

a=kK-— Z H(1+LajJ+Lb(1_j)J)~

i=k/+1j=i

Proof. By Lemma 1.2, g(S((a,b))) = |aa], for the greatest integer o
where NN [b(a—1), ar] is nonempty; in particular o < . The lower bound
a > k' is trivial when &' = 0; if b < 1 then k(a — 1,0 —1) = Lg:—;] <0
=1 o~ a=1,

and hence k¥’ = 0. Otherwise, b > 1 and so by Lemma 1.1, — < 73
/

rearranging we get b(k' — 1) < ax’ — 1. Hence the interval [b(k’ — 1),&%]’
has length at least 1. It must therefore contain an integer, so o > k’.

1 a< i.
0 a>i
this gives us a = k — Y7 f(i) = k — > i,/ 1 f(i). We define f via

To prove the « formula, for i < x we define function f(i) =
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f@) = HJ i x(), for x(j) = _g. We now have
a=rK—3 K,—‘rlH_I; i x(7)-

We now calculate x(j) explicitly by showing that for j > &’ + 1, the
interval [b(j — 1), aj] contains at most one integer. For b < 1, we have
bj > aj >aj—|—(b—1) sob(j—l) > aj — 1. For b > 1, by Lemma 1.1
we have ‘;j < w1 < (] 1)+1 for any 7 — 1 > k’. Rearranging, we get
b(j —1) > aj — 1. Hence |[b(j —1),aj]NN| <1 and in fact x(j) equals the

number of integers in [b(j — 1), aj], i.e. x(j) =1+ |aj| + [b(1 —7)]. 1

S
=
~
=
S 2
S, S,
T

We have a € [r/, k]; in general, neither bound can be improved. The
size of this interval, k — x’, can be arbitrarily large, when g is small. On
the other hand, the following shows that x — x’ is small if g > 2. This is
desirable, as it shortens the calculation for g(S(I)).

PROPOSITION 3.1. Let0 < 2a < b. Let k,x’ be as in Theorem 3.1. Then
, 1 a<l1
k—kK = .
0 a>1
b—1 _b

Proof.  For convenience, set I = (3=, ;== ); £ — ' counts the number of
integers in I. Suppose first that b < 1. Then k(a —1,b—1) <0, so &' = 0.
Note that b > 2a implies b — a > a, and hence bia <1 sol1+

a
1+ % =2 and hence k= [1+ 3% | = 1. Suppose now tﬁat a<1 2 g If
a < 1 then b>1=3 +a Alternatively, if a > %7 then b > 2a > %—i—a.
Hence b> 3 + a; rearrangmg we get b — < 2. Hence I is of length less
than 2, and can contain at most one integer. Therefore k — x’ < 1. But I
contains the integer 1 = b’—“ so k — k' = 1. Lastly, we consider the case

a>1 Wehaveb—1> b— a, hence b; > 1 and I does not contain 0

or 1. Suppose I contains integer n > 2. Then 2 < m; rearranging we

o

get b < 2a, a contradiction. Hence I contains no integers, and k—x’ = 0. |

Computing m(S((a,b))) is similar to computing g(S((a,d))), in that we
must count integers in an interval, only this time the intervals are open.
We first prove a technical lemma, for which we recall Farey sequences (for
an introduction see [1]). The n'" Farey sequence F), consists of all reduced
fractions in [0, 1] whose denominator is at most n, arranged in increasing
order. The key property we require is that if ¢, & are consecutive terms in
a Farey sequence, then bc — ad = 1.

LEMMA 3.1. Let 0 < a < b. Let n € N be minimal such that (an,bn)
contains an integer. Suppose n > 1. Then (an,bn) contains exactly one
integer.



6 PONOMARENKO AND ROSENBAUM

Proof. Suppose by way of contradiction that (an,bn) contains at least
two integers. Then there is some m € N such that m,m + 1 € (an,bn).
Set d = ged(m,n). If d > 1 then m/d € (an/d,bn/d) violates the min-
imality of n. Similarly, ged(m + 1,n) = 1. Let m’ € (0,n — 1) with
m = m'/ + kn for some integer k. We now consider the n'" Farey se-
quence F,,. Both ’%l and % are elements of F,; however (m' + 1)n —
m'n = n > 1, so they are not consecutive terms and there must be

some § in F,, with m?/ < % < mlT'H, with ¢ < n. But then m/+k” <

prak o mtltkn oo 4 gk € (ag, bq), violating the minimality of n. ||

q n ’

We now compute the multiplicity m(S((a,b))). The reverse problem of
finding an open interval whose semigroup possesses a given multiplicity, is
solved in [6]. A non-discrete version is proved as Proposition 5 in [3].

THEOREM 3.2. Suppose 0 < a < b. Set ¥’ = k(1,b —a +1). Then
m(S((a,b))) = [aa], where o € N satisfies 1 < o < k”. Specifically,

a=Y TI@+laj] +-bi]).

i=0 j=1

Proof.  Set m = m(S((a,b))), and let @« € N be minimal such that

1"

o ¢ (a,b); then m(S((a,b))) = [aa]. By Lemma 1.1, ﬁ < T
Rearranging, we find £”b — k”’a > 1, so there is an integer t € (k”a, k"'b).
Suppose that o > £”. We then have 2 < 2 < s since 2 and -7 are in
(a,b), we conclude that 7 € (a,b), which contradicts the minimality of c.
Hence a < K.

We now prove the a formula. We proceed in a manner similar to The-

1 1< ;
orem 3.1, by defining f(i) = =Y ia fG6) = T—, (1 — x(5)),
0 i>a« J
where x(j) is the number of integers in (aj,bj). For i < «, x(i) =
0. By Lemma 3.1, x(o) = 1, so f(i) = 0 for i > «. Hence a =

S £ = 5 T (1= x(4)), but L — x(j) =2+ Laj] + [~bj]. 1

We have a € [1,£”]; in general, neither bound can be improved. The
upper bound «” can be arbitrarily large, when b — a is small. On the other
hand, the following shows that " is small if b — a is large, thus simplifying
computation of m.

PROPOSITION 3.2. Let 0 <a <b. Letn € N be minimal withb—a > L.
Then k" = n, in the notation of Theorem 3.2.
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Proof. We have % < b—a < -1 hence n > % >

n—1’

n
ph)=n—landw” =[5 = 1+ =1+ (n—-1)=n. |
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