
A Heuristic Approach to the Game of Sylver
Coinage

Gilad Moskowitz1 and Vadim Ponomarenko2

1 Mathematics Department
San Diego State University

San Diego, CA 92182
gilad.moskowitz@gmail.com
2 Mathematics Department
San Diego State University

San Diego, CA 92182
vadim123@gmail.com

Abstract. Sylver Coinage is a zero-sum terminating game, making the
search for an optimal strategy very enticing. Many of the challenges
that existed with creating computer programs to play games like Chess
and Go exist for Sylver Coinage as well. However, unlike Chess and
Go, working towards finding an optimal strategy in the game of Sylver
Coinage presents some new and interesting challenges. We attempt to
make some headway on the problems associated with finding a strategy
for Sylver Coinage using several heuristic algorithms employed by bots
to play the game.

1 Introduction

John H. Conway discovered the game of Sylver Coinage, and popularized it in
the 1982 book, Winning Ways, for your mathematical plays [1]. In this game,
two players face off taking turns naming positive integers that cannot be created
as a sum combination of previously named integers. The first player forced to
name 1, loses. An example game is given in Table 1, below.

Since its inception, Sylver Coinage has been studied extensively in both pub-
lished [3–6, 9] and unpublished [2, 7, 8] works. A lot is known about winning and
losing positions, but not much is known about how to actually win from those
positions. For instance, Hutchings’s Theorem [1] tells us that any prime num-
ber greater than or equal to five is a winning first move. However, there is no
known strategy for finding a winning move after playing such a prime number.
Another problem that comes up in the study of Sylver Coinage is that of infinite
positions.

Definition 1. An infinite position in the game of Sylver Coinage is one in
which there are still infinitely many remaining legal moves.

The first move played by each player is played in an infinite position, but we
can see that sometimes a game can remain in an infinite position for a long

2 Gilad Moskowitz and Vadim Ponomarenko

Table 1. Example Sylver Coinage Game.

Player Move Played
Remaining Pos-
sible Moves

Explanation

1 3 1, 2, 4, 5, 7, 8. . . Any move that is not a multiple of 3

2 5 1, 2, 4, 7
8 = 3 + 5, 9 = 3 + 3 + 3, and 10 = 5
+5, so all moves above 7 can be made
as 8 + 3k, 9 + 3k, or 10 + 3k for k ≥ 0.

1 7 1, 2, 4 Remaining moves after playing 7.

2 4 1, 2 Remaining moves after playing 4.

1 2 1 Remaining moves after playing 2.

2 1 — Player 2 is forced to play 1 and loses.

time. For instance, if Player 1 plays 22
100

, then Player 2 can play 22
100−1, then

Player 1 can play 22
100−2 keeping the game infinite since no odd number has

been played, and this can go on for a long time. There can also be infinitely
many possible combinations that keep a game in an infinite position. However, a
game cannot remain in an infinite position forever [1]. All Sylver Coinage games
will eventually end.

Comparing Sylver Coinage to games like Chess and Go, we see three distinct
problems with the analysis of the game. They are the size of a position, the lack
of an established corpus of human strategy, and the lack of a natural way to
naively evaluate a position.

In a game of Sylver Coinage, we have the existence of infinite positions,
and we already discussed how this adds difficulty to the problem. Also, many
finite Sylver Coinage positions have a much larger move set than any possible
position in a game of Chess or Go. This fact makes is so that computationally
calculating a winning move from a given position can be almost impossible, and
even a look-ahead strategy would be too computationally intensive.

Little has been discovered that concerns the strategies used to win a game of
Sylver Coinage. Some positions have been analyzed completely and full winning
strategies are known, similar to how there are rules to the endgame in Chess,
but there are still many finite positions that have no known winning strategy.
The only “opening” that is proven to be a winning strategy is a prime number
greater than 5. However, there is no known strategy to winning after playing
a prime number greater than 5 as an opening move. There is a complete lack
of literature on attempted strategies and human evaluation of general positions.
When attempting to write a bot to play a game like Chess or Go, there are many
resources on strategy that can be used to improve the bot. For Sylver Coinage,
no such resources exist.

Lastly, a major problem of Sylver Coinage is the lack of a naive way to
evaluate a position. In Chess, for instance, pieces have value. One may evaluate
positions based on material gains of each player. For instance, in most situations,
a position in which a player doesn’t have a queen on the board is much worse
than the same position with the player still in control of their queen. In Sylver
Coinage, there is no inherent way to evaluate positions and to make material

A Heuristic Approach to the Game of Sylver Coinage 3

gains as it were. Therefore, making a bot proves even more difficult as there is
no easy implementation of a strategy that prioritizes material gains, a strategy
often used historically by primitive chess bots.

With modern computational power, we hope to find new insights on the game
using various algorithms that play against each other. Hence, our goals include
producing a bot that plays well, and making inroads on the second and third
problems. Instead of human analysts writing books on what they believe is a good
position, we will have objectively skilled bots that can provide concrete data.
Further, the algorithms of our best bots make progress on the third problem, by
giving us a way to evaluate a position.

2 Bot Strategies for Playing Sylver Coinage

In pursuit of an optimal strategy for the game of Sylver Coinage, we began the
development of several bots to play the game against each other. We will discuss
the development of the heuristic strategy used by the current most successful
bot and show results from testing this bot against various prior versions.

While the position is still infinite, all the bots rely on the same heuristics
and some random choices to play their moves. Only once the position is finite,
do the bots discussed begin to implement their strategy. For this reason, we will
only focus on the strategy in a finite position. We begin by describing the first
set of “naive” bots with minimal strategy. These bots were

– randomBot - Always picks a random legal move
– alwaysMin - Always picks the smallest legal move greater than 3 (since pick-

ing 1, 2, or 3 in any position will lead to a loss if the opponent plays correctly)
– alwaysMax - Always picks the largest legal move
– maximalOdd - The most complicated of the initial batch. This bot would

pick the largest legal move that would return an odd position. If no move
returns an odd position, it will just pick the largest move.

Definition 2. We say the parity of a position is even when the number of re-
maining legal moves is even, and odd when the number of remaining legal moves
is odd.

The motivation for the maximalOdd bot came from the realization that if
you can always return a position with odd parity to your opponent, you will
eventually return a position where the only remaining legal moves are 1, 2, and
3 thereby winning. When we ran a round robin tournament with these four
aforementioned bots, we got the results found in Table 2.
We see that the maximalOdd bot outperforms its competition. Comparing its
success rate versus each individual bot over 1000 games, we found that against
alwaysMax, the maximalOdd bot won all 1000 games; against alwaysMin, it won
876 games; and against randomBot, it won 760 games.

The performance of the maximalOdd bot led us to look for advancements
that can be made on this strategy. We came up with the following definitions,
leading to our more advanced maxThen1Weak bot.

4 Gilad Moskowitz and Vadim Ponomarenko

Table 2. Round Robin Tournament with three rounds, where each match between two
bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1 point
for a tie, and 0 points for a lose.

Bot Name
Match Score
(27 maximum)

Total Wins Win Percentage

maximalOdd 27 397 88.22%

alwaysMax 18 218 48.44%

randomBot 3 167 37.11%

alwaysMin 6 118 26.22%

Definition 3. We say that a position is weak, or 0-weak, if the parity of the
position is odd.

A position in which the only remaining move is 1 is a lost position. Similarly, a
position with only 1, 2, and 3 as legal moves is lost. So, we see that in many cases
a position of odd parity can lead to a loss. This leads us to our next concept.

Definition 4. We say that a position is 1-weak if for every move, j > 1 in
the position, there is a different unique move, k > 1, such that playing k in
response to j results in a weak position. Note that a 1-weak position is also a
weak position as every move other than 1 has a pair that can be played to return
a weak position.

The idea here is that if Player 1 is in a 1-weak position and for every move
there is a response that returns a weak position, then Player 1 will end up playing
into a weak position again no matter their move. Therefore, they are unlikely to
win if the opponent plays perfectly.

Working with this definition, we built a bot, maxThen1Weak, that checks
all the remaining legal moves and sees if playing any of them will result in the
opponent ending up in a 1-weak position. However, checking every move and
then checking if a position is 1-weak is very costly in terms of computation.

Giving the bots any amount of time to calculate and play their moves could
result in extremely long games. Suppose there are 10000 remaining legal moves.
Testing all the moves to see if playing any of them would result in a 1-weak
position is close in computational time to 100003 computations of position. Each
computation of the remaining legal moves in a position is also costly. Thus, to
prevent games from lasting too long, we implemented a time constraint on the
bot to play their move. We chose to have each bot play with a 30 second chess
clock, meaning that each bot has a total of 30 seconds for all their moves. We
wanted to prevent extremely long games while still giving bots time to make
calculations on critical moves.

To make sure that our maxThen1Weak bot doesn’t take too long to play a
move, it only starts to implement its strategy when there are less than thirty
remaining legal moves. Until then it will play the maximal legal move remaining.
Even with this restriction on the implementation of the strategy, the bot still
vastly outperforms the competition thus far. In a round robin tournament against

A Heuristic Approach to the Game of Sylver Coinage 5

all the previously mentioned bots, the maxThen1Weak bot performed as seen in
Table 3.

Table 3. Round Robin Tournament with three rounds, where each match between two
bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1 point
for a tie, and 0 points for a lose.

Bot Name
Match Score
(36 maximum)

Total Wins Win Percentage

maxThen1Weak 36 585 97.5%

alwaysMax 18 213 35.5%

alwaysMin 9 135 22.5%

maximalOdd 27 418 69.67%

randomBot 0 149 24.83%

We can see that the maxThen1Weak bot was much ahead of its competition,
only losing 15 out of the 600 games played. In a head-to-head match of 1000
games against the maximalOdd bot, the maxThen1Weak bot was able to win
934 games.

However, as it turns out, there are many positions that are 1-weak, but not
lost. To address this, we arrive at our next definition.

Definition 5. We say that a position is 2-weak if for each move, j > 1 in the
position, there is a different unique move, k > 1, such that playing k in response
to j returns a 1-weak position.

Remark 1. When checking if a position is 2-weak, we are seeing what the position
will be after four moves have been played. In many finite positions, we can try
to calculate every possible remaining position to find a complete strategy for
winning, but this is very computationally expensive. With the strategy of 2-
weak we only need to look a few moves ahead to give us a decent sense of the
position.

So, using this new definition, we created the maxThen2Weak bot (previously
called strongCounterV2, winner of the 2021 Computer Olympics). This bot, like
the maxThen1Weak bot, only uses its strategy when there are less than thirty
remaining legal moves. With this modification, we saw significant improvement.
When we added maxThen2Weak to the round robin tournament we got the
results in Table 4.

We see that the maxThen2Weak bot does have a slight edge over the max-
Then1Weak bot, but both are much stronger than the rest of the bots. In a
head-to-head match of 1000 games against the maxThen1Weak bot, the max-
Then2Weak bot was able to win 664 games.

Using the notion of a 2-weak position we devised an improvement for the
maxThen2Weak bot. The pseudo-code for this bot, dubbed peekThen2Weak
(previously called strongCounterV3), follows.

6 Gilad Moskowitz and Vadim Ponomarenko

Table 4. Round Robin Tournament with three rounds, where each match between two
bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1 point
for a tie, and 0 points for a lose.

Bot Name
Match Score
(45 maximum)

Total Wins Win Percentage

maxThen2Weak 45 674 89.87%

maxThen1Weak 36 650 86.67%

maximalOdd 27 423 56.4%

alwaysMax 15 216 28.8%

alwaysMin 6 113 15.07%

randomBot 6 174 23.2%

de f pretendMove (move , remainingMoves) :
r e turn [i i f (i in remainingMoves a f t e r move i s played)]

i f (numberOfRemainingMoves < 3 0) :
f o r i in remainingMoves :

nextPos i t i on = pretendMove (i , remainingMoves)
check i f nex tPos i t i on i s 2−weak
i f yes :

play i
i f no i r e tu rn s a 2−weak p o s i t i o n :

play max remainingMove

e l s e i f (numberOfRemainingMoves < 2 0 0) :
f o r i in remainingMoves :

nextPos i t i on = pretendMove (i , remainingMoves)
i f (numberOfMovesInNextPosition < 2 0) :

check i f nextPos i t i on i s 2−weak
i f yes :

play i
i f no i r e tu rn s a 2−weak p o s i t i o n :

play max remainingMove

e l s e :
play max remainingMove

The logic of the bot is to see if playing a move will return a 2-weak position,
thereby giving the opponent a bad position to play from. If there is a move
that returns a small 2-weak position, play it. If not, play the largest remaining
move, which will only get rid of one move, and hope that your opponent makes a
mistake, letting you put them in a 2-weak position. One of the big goals for this
bot is to make it play efficiently and keep the calculation times to a minimum.
This means that we can’t test for 2-weak positions after playing every move in
a large position since the calculation time for that would be close to n5 where

A Heuristic Approach to the Game of Sylver Coinage 7

n is the number of remaining moves. Through a lot of testing, we found that
starting the checks for 2-weak positions when the number of remaining moves
was less than 30 was optimal for maximizing the number of wins while staying
within the time constraint. Although this is a relatively small position, there are
still many positions that fall into this category. We have also seen that in larger
positions opposing bots rarely have a better strategy and therefore often lose
once the position becomes small.

Adding this bot to the round robin we have been running, we got the following
results.

Table 5. Round Robin Tournament with three rounds, where each match between two
bots consists of 50 games. Each match gets scored as follows, 3 points for a win, 1 point
for a tie, and 0 points for a lose.

Bot Name
Match Score
(54 maximum)

Total Wins Win Percentage

peekThen2Weak 52 781 86.78%

maxThen2Weak 43 722 80.22%

maxThen1Weak 39 707 78.56%

maximalOdd 27 427 47.44%

alwaysMax 16 221 24.56%

alwaysMin 6 122 13.56%

randomBot 4 170 18.89%

3 Introducing Elo to keep track of bot success

The Elo rating system, named after Arpad Elo, is commonly used to represent
the relative skill level of players in various games including board games like chess
and Scrabble, and video games like League of Legends. Even though the player
pool was small, the results of the round robin tournaments showed that certain
bots are almost always able to beat other bots. This means that win percentage
cannot be used as a good metric to determine the skill level of the bot since it
can vary based on the competition. This led to the idea of implementing an Elo
ranking system for the bots. That way, bots could be tiered in some capacity
and we can get a sense of how likely one bot is to beat another. An Elo ranking
is also future-proof. As more competitions are held and more bots compete, an
Elo ranking allows for more accurate comparison of bots, even ones that did not
play in the same tournament.

To generate an Elo ranking for each of the bots, we used a series of round
robin tournament with Elo for each bot being calculated after it completed a
match. Suppose bot A is playing against bot B. After the match the winning
bot gets a score of 3 and the losing bot gets a score of 0. In the case of a tie,

8 Gilad Moskowitz and Vadim Ponomarenko

both bots get a score of 1. The formula for calculating each bots Elo is

EA =
1

1 + 10
RB−RA

400

EB =
1

1 + 10
RA−RB

400

R′A = RA + 20 ∗ (BotAScore− 2 ∗ EA)

R′B = RB + 20 ∗ (BotBscore− 2 ∗ EB)

where RA and RB are the bots’ Elos going into the match and R′A and R′B are the
bots’ Elos following the match. The scoring was set in this manner so that if two
bots of equal Elo played and the match resulted in a tie, neither bot’s Elo would
change. Also, with this system the bot’s Elo would change aggressively based
on a win or loss. This was done to make sure that we can get fairly accurate
Elos quickly. All the bots were given a base Elo of 800 except for alwaysMin
with an Elo of 400, maxThen1Weak with an Elo of 1600, and a few other bots
with various strategies. We then ran a round robin tournament with 14 bots
including all the ones mentioned so far and one AI that was trained via Deep
Reinforcement Learning. The tournament consisted of 4 rounds with each match
having 25 games, with peekThen2Weak coming in first and maxThen2Weak as
the runner-up. We set the bots Elos in accordance with the results of this round
robin and ran another round robin with the same bots. This time, three rounds
with each match having 30 games, again we ended with peekThen2Weak coming
in first and maxThen2Weak as the runner-up. After this, we scaled all the bots
Elos by setting the Elo of the worst bot, alwaysMin, to 400 and adjusting the
rest of the Elos accordingly.

At this point, we had the following Elo ratings for each of the aforementioned
bots.

Table 6. Bots and their respective Elo ratings after a series of round robin tournamets
to initialize them.

Bot Name Elo

peekThen2Weak 2605

maxThen2Weak 2514

maxThen1Weak 2279

maximalOdd 1313

alwaysMax 759

randomBot 429

alwaysMin 404

Once we had a fairly accurate Elo rating for each bot, we changed the formula
for calculating Elo. Now, a winning bot would get a score of 1, a losing bot would

A Heuristic Approach to the Game of Sylver Coinage 9

get a score of 0, and in the case of a tie each bot would get a score of 0.5. The
new Elo formula is

EA =
1

1 + 10
RB−RA

400

EB =
1

1 + 10
RA−RB

400

R′A = RA + 16 ∗ (BotAScore− 2 ∗ EA)

R′B = RB + 16 ∗ (BotBScore− 2 ∗ EB).

This is a more conservative system so that the bots don’t change score so drasti-
cally. We hope that as more bots and algorithms are developed, we can use this
Elo system to determine their success more accurately.

4 Conclusion

One of the problems we mentioned earlier with the journey to finding an optimal
strategy for the game of Sylver Coinage is the lack of a way to evaluate a position.
Through our research, we’ve developed four ways of analyzing a position 0-weak,
1-weak, 2-weak, peek-then-2-weak. Building on this, we can discuss two more
definitions.

Definition 6. We say that a position is n-weak if for each move, j > 1 in the
position, there is a different unique move, k > 1, such that playing k in response
to j returns a (n - 1)-weak position. For example, in a 3-weak position, for every
j > 1 there is a response k > 1 such that the resulting position after playing both
moves is a 2-weak position.

Definition 7. We stay that a position is ∞-weak if for every move greater than
1 that the current player can play for the rest of the game, their opponent will
always have a unique response greater than 1 that returns a weak position.

We see that an∞-weak position is a lost position as the opponent will always
have a response to keep the parity odd, eventually returning the position with 1
being the only legal move. It is important to note that finding an∞-weak position
is not guaranteed, and that not all lost positions are necessarily ∞-weak. Also,
it is very computationally difficult to determine if a position is ∞-weak as we
have to calculate every possible remaining position. Even just calculating if a
position is n-weak for n > 2 gets very computationally expensive very quickly.
However, surely finding a move that puts our opponent in a 3-weak position is
better than a move that puts our opponent in a 2-weak position. Therefore, logic
says that with enough computational power, a bot that searches for a move that
returns a 3-weak position, then, failing to find one, searches for a move that
returns a 2-weak position, and so forth would be stronger than our current bots.
This shows that still, there is much work to be done in the search for an optimal
strategy for the game Sylver Coinage.

10 Gilad Moskowitz and Vadim Ponomarenko

Our bots provide headway in addressing the second and third problems we
mentioned in the introduction regarding the analysis of the game. With regards
to the second problem, the various strategies implemented by the bots provide
some material concerning strategies for winning a game of Sylver Coinage. With
regards to the third problem, although we still have no way of naively evaluating
a position, the hierarchical nature of our bot strategies suggests that our anal-
ysis of position has some value. That leads to the likelihood of finding ways to
evaluate a position, even if that value comes from a bot’s analysis.

We hope that with the development of the bots thus far and the growth of
Sylver Coinage as a competitive bot played game, we can make great headway
on the problems associated with finding a winning strategy for the game.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways, for your mathematical
plays. Academic Press, London (1982)

2. Blok, T.: Sylver coinage positions with g=2 (2021),
https://userpages.monmouth.com/c̃olonel/sylver/Sylver Coinage positions with g=2.pdf

3. Eaton, R., Herzinger, K., Pierce, I., Thompson, J.: Numerical semigroups and the
game of sylver coinage. The American Mathematical Monthly 127:8 (2020)

4. Guy, R.K.: Twenty questions concerning conway’s sylver coinage. The American
Mathematical Monthly 83 (1976)

5. Michael, T.S.: How to Guard an Art Gallery and Other Discrete Mathematical
Adventures. Johns Hopkins University Press (2009)

6. Nowakowski, R.J.: . . ., Welter’s Game, Sylver Coinage, Dots-and-
Boxes, In: Combinatorial games (Columbus, OH, 1990), Proc.
Sympos. Appl. Math., vol. 43, pp. 155–182. Amer. Math. Soc.,
Providence, RI (1991). https://doi.org/10.1090/psapm/043/1095544,
https://doi.org/10.1090/psapm/043/1095544

7. Sicherman, G.: New results in sylver coinage (1991),
https://userpages.monmouth.com/ colonel/sylver/index.html

8. Sicherman, G.: Late news of sylver coinage (1996),
https://userpages.monmouth.com/ colonel/sylver/index.html

9. Sicherman, G.: Theory and practice of sylver coinage. Integers 2 (2002)

