Odds Inversion Problem With Replacement

In the recent piece [1] in this Monthly, Moniot worked toward determining which probabilities $\frac{p}{q}$ were achievable when drawing two balls from a jar of x red balls and y blue balls, without replacement, where a successful trial has the two drawn balls of different colors. This was done by reducing the problem to solving the Pell-like equation $u^{2}-D v^{2}=p^{2}$, where $D=q(q-2 p)$. Solutions to this, however, sometimes give only extraneous x, y : e.g., $p=4, q=9, D=9$, has no possible nonnegative integers x, y with $x+y \geq 2$ giving probability $\frac{4}{9}$.

We completely answer the simpler question where the draws are with replacement, by reducing the problem to finding nontrivial solutions to the similar Diophantine equation $u^{2}-D v^{2}=0$.

Theorem. Probability $\frac{p}{q}$ is achievable as the probability of two drawn balls (with replacement, from x red and y blue balls) being different, if and only if $D=q(q-2 p)$ is a perfect square.

Proof. Probability $\frac{p}{q}$ is achievable, if and only if there are nonnegative integers x, y, not both zero, with $\frac{p}{q}=\frac{2 x y}{(x+y)^{2}}$. This rearranges to $p x^{2}-2(q-p) x y+$ $p y^{2}=0$. Taking the substitution $v=y+x, t=y-x$, this rearranges to $(2 p-$ q) $v^{2}+q t^{2}=0$, which in turn rearranges to $(q t)^{2}-D v^{2}=0$. Lastly, taking $u=q t$, this becomes $u^{2}-D v^{2}=0$ (where u, v are not both zero).

If $\frac{p}{q}$ is achievable, then D must be a perfect square (by considering unique factorization of integers u, v, D into primes). Suppose now that $D=m^{2}$. We take $u=2 q m, v=2 q$, which satisfy $u^{2}-D v^{2}=0$. These u, v correspond to $t=2 m, x=q-m, y=q+m$, where $\frac{2 x y}{(x+y)^{2}}=\frac{p}{q}$. Each of x, y are nonnegative integers, since $m^{2}=D=q^{2}-2 q p \leq q^{2}$. Hence $\frac{p}{q}$ is achievable.

In particular, no probabilities greater that $\frac{1}{2}$ (i.e. $D<0$) are achievable. Compare to the "elliptical case" in [1], where infinitely many such probabilities are achieved without replacement. Note also that achievable probabilities are dense in $\left[0, \frac{1}{2}\right]$, because a brief calculation shows that achievable $\frac{p}{q}$ are exactly those rationals equal to $\frac{1}{2}\left(1-r^{2}\right)$ for some rational $r \in[0,1]$.

REFERENCES

1. Moniot, R. K. (2021). Solution of an Odds Inversion Problem. Amer. Math. Monthly. 128(2): 140149.
—Submitted by Kieran Hilmer, San Diego State University and
Ron Lycan, San Diego State University and Vadim Ponomarenko, San Diego State University
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 11D09
